scholarly journals Power Management Strategy of a Parallel Hybrid Three-Wheeler for Fuel and Emission Reduction

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1833
Author(s):  
Waruna Maddumage ◽  
Malika Perera ◽  
Rahula Attalage ◽  
Patrick Kelly

Millions of three-wheelers in large cities of Asia and Africa contribute to the already increasing urban air pollutants. An emerging method to reduce adverse effects of the growing three-wheeler fleet is hybrid-electric technology. The overall efficiency of a hybrid electric vehicle heavily depends on the power management strategy used in controlling the main powertrain components of the vehicle. Recent studies highlight the need for a comprehensive report on developing an easy-to-implement and efficient control strategy for hybrid electric three-wheelers. Thus, in the present study, a design methodology for a rule-based supervisory controller of a pre-transmission parallel hybrid three-wheeler based on an optimal control strategy (i.e., dynamic programming) is proposed. The optimal control problem for minimizing fuel, emissions (i.e., HC, CO and NOx) and gear shift frequency are solved using dynamic programming (DP). Numerical issues of DP are analyzed and trade-offs between optimizing objectives are presented. Since DP strategy cannot be implemented as a real-time controller, useful strategies are extracted to develop the proposed rule-based strategy. The developed rule-based strategy show performance within 10% of the DP results on WLTC and UDC-NEDC drive cycles and has the clear advantage of being near-optimal, easy-to-implement and computationally less demanding.

Author(s):  
Rajneesh Kumar ◽  
Monika Ivantysynova

Power-split drive represents a class of Continuously Variable Transmission (CVT) that combines the convenience of CVT with the high overall transmission efficiency. In its hybrid configuration, a high pressure accumulator is used to capture the braking energy that is regenerated to aid the engine power during the next propulsion event. Output coupled power split drives are particularly suited for small and medium duty vehicle applications. In this work, optimal power management strategy has been designed based on Dynamic Programming approach. Although the control strategy obtained by Dynamic Programming is non-causal, it represents the benchmark solution against which other implementable power management schemes can be compared. Another control strategy based on instantaneous optimization is also discussed where a given cost function is minimized at every instant. It results in a sub-optimal solution that is practical and implementable. Finally, Dynamic Programming results are utilized to discuss the possible improvements that can be made to the instantaneous optimization based control strategy.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yuan Zou ◽  
Hou Shi-jie ◽  
Li Dong-ge ◽  
Gao Wei ◽  
Xiao-song Hu

A heavy-duty parallel hybrid electric truck is modeled, and its optimal energy control is studied in this paper. The fundamental architecture of the parallel hybrid electric truck is modeled feed-forwardly, together with necessary dynamic features of subsystem or components. Dynamic programming (DP) technique is adopted to find the optimal control strategy including the gear-shifting sequence and the power split between the engine and the motor subject to a battery SOC-sustaining constraint. Improved control rules are extracted from the DP-based control solution, forming near-optimal control strategies. Simulation results demonstrate that a significant improvement on the fuel economy can be achieved in the heavy-duty vehicle cycle from the natural driving statistics.


Sign in / Sign up

Export Citation Format

Share Document