scholarly journals A Review on Power Electronics Technologies for Power Quality Improvement

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8585
Author(s):  
Joao L. Afonso ◽  
Mohamed Tanta ◽  
José Gabriel Oliveira Pinto ◽  
Luis F. C. Monteiro ◽  
Luis Machado ◽  
...  

Nowadays, new challenges arise relating to the compensation of power quality problems, where the introduction of innovative solutions based on power electronics is of paramount importance. The evolution from conventional electrical power grids to smart grids requires the use of a large number of power electronics converters, indispensable for the integration of key technologies, such as renewable energies, electric mobility and energy storage systems, which adds importance to power quality issues. Addressing these topics, this paper presents an extensive review on power electronics technologies applied to power quality improvement, highlighting, and explaining the main phenomena associated with the occurrence of power quality problems in smart grids, their cause and effects for different activity sectors, and the main power electronics topologies for each technological solution. More specifically, the paper presents a review and classification of the main power quality problems and the respective context with the standards, a review of power quality problems related to the power production from renewables, the contextualization with solid-state transformers, electric mobility and electrical railway systems, a review of power electronics solutions to compensate the main power quality problems, as well as power electronics solutions to guarantee high levels of power quality. Relevant experimental results and exemplificative developed power electronics prototypes are also presented throughout the paper.

Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 118 ◽  
Author(s):  
Vitor Monteiro ◽  
Jose Afonso ◽  
Joao Ferreira ◽  
Joao Afonso

Nowadays, concerns about climate change have contributed significantly to changing the paradigm in the urban transportation sector towards vehicle electrification, where purely electric or hybrid vehicles are increasingly a new reality, supported by all major automotive brands. Nevertheless, new challenges are imposed on the current electrical power grids in terms of a synergistic, progressive, dynamic and stable integration of electric mobility. Besides the traditional unidirectional charging, more and more, the adoption of a bidirectional interconnection is expected to be a reality. In addition, whenever the vehicle is plugged-in, the on-board power electronics can also be used for other purposes, such as in the event of a power failure, regardless if the vehicle is in charging mode or not. Other new opportunities, from the electrical grid point of view, are even more relevant in the context of off-board power electronics systems, which can be enhanced with new features as, for example, compensation of power quality problems or interface with renewable energy sources. In this sense, this paper aims to present, in a comprehensive way, the new challenges and opportunities that smart grids are facing, including the new technologies in the vehicle electrification, towards a sustainable future. A theoretical analysis is also presented and supported by experimental validation based on developed laboratory prototypes.


Author(s):  
Anandh N. ◽  
Pramod Antony D'Sa ◽  
M.V. Gautam ◽  
V.Sai Sandeep

Power electronics play a significant role in different areas of technology, more usage of power electronic devices lead to more harmonic content and various power quality issues in the system.  Therefore, power quality gains more significance in the current era of research. Power electronics equipment’s with non-linear loads concludes with more harmonic disturbances and lower power factor. Harmonic impurities are the major problem ingredient due to the connection of non-linear load. To lessen the harmonics usually passive filters are used. The major objective of this work is to monitor and analyse the power quality of uninterrupted power supply by means of DAQ system that gathers real time data on the system and then the data is analysed using National Instruments LabVIEW. Once power quality analysis is done, a new technique of filter implementation using output transformer of the UPS was explored and passive filter was simulated using MATLAB/Simulink and then simulated filter was implemented in order to achieve power quality improvement.


Sign in / Sign up

Export Citation Format

Share Document