power electronics
Recently Published Documents


TOTAL DOCUMENTS

6634
(FIVE YEARS 1310)

H-INDEX

88
(FIVE YEARS 12)

Author(s):  
Carlos Collados-Rodriguez ◽  
Marc Cheah-Mane ◽  
Eduardo Prieto-Araujo ◽  
Oriol Gomis-Bellmunt

Author(s):  
Oriol Gomis-Bellmunt ◽  
Jie Song ◽  
Marc Cheah-Mane ◽  
Eduardo Prieto-Araujo

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 225
Author(s):  
A. Revathy ◽  
C. S. Boopathi ◽  
Osamah Ibrahim Khalaf ◽  
Carlos Andrés Tavera Romero

The wider bandgap AlGaN (Eg > 3.4 eV) channel-based high electron mobility transistors (HEMTs) are more effective for high voltage operation. High critical electric field and high saturation velocity are the major advantages of AlGaN channel HEMTs, which push the power electronics to a greater operating regime. In this article, we present the DC characteristics of 0.8 µm gate length (LG) and 1 µm gate-drain distance (LGD) AlGaN channel-based high electron mobility transistors (HEMTs) on ultra-wide bandgap β-Ga2O3 Substrate. The β-Ga2O3 substrate is cost-effective, available in large wafer size and has low lattice mismatch (0 to 2.4%) with AlGaN alloys compared to conventional SiC and Si substrates. A physics-based numerical simulation was performed to investigate the DC characteristics of the HEMTs. The proposed HEMT exhibits sheet charge density (ns) of 1.05 × 1013 cm−2, a peak on-state drain current (IDS) of 1.35 A/mm, DC transconductance (gm) of 277 mS/mm. The ultra-wide bandgap AlGaN channel HEMT on β-Ga2O3 substrate with conventional rectangular gate structure showed 244 V off-state breakdown voltage (VBR) and field plate gate device showed 350 V. The AlGaN channel HEMTs on β-Ga2O3 substrate showed an excellent performance in ION/IOFF and VBR. The high performance of the proposed HEMTs on β-Ga2O3 substrate is suitable for future portable power converters, automotive, and avionics applications.


2022 ◽  
pp. 323-352
Author(s):  
Radian Belu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document