scholarly journals Predicting Aboveground Biomass in Second Growth Coast Redwood: Comparing Localized with Generic Allometric Models

Forests ◽  
2016 ◽  
Vol 7 (12) ◽  
pp. 96 ◽  
Author(s):  
Anil Kizha ◽  
Han-Sup Han
Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 234
Author(s):  
Linda Flade ◽  
Christopher Hopkinson ◽  
Laura Chasmer

In this follow-on study on aboveground biomass of shrubs and short-stature trees, we provide plant component aboveground biomass (herein ‘AGB’) as well as plant component AGB allometric models for five common boreal shrub and four common boreal short-stature tree genera/species. The analyzed plant components consist of stem, branch, and leaf organs. We found similar ratios of component biomass to total AGB for stems, branches, and leaves amongst shrubs and deciduous tree genera/species across the southern Northwest Territories, while the evergreen Picea genus differed in the biomass allocation to aboveground plant organs compared to the deciduous genera/species. Shrub component AGB allometric models were derived using the three-dimensional variable volume as predictor, determined as the sum of line-intercept cover, upper foliage width, and maximum height above ground. Tree component AGB was modeled using the cross-sectional area of the stem diameter as predictor variable, measured at 0.30 m along the stem length. For shrub component AGB, we achieved better model fits for stem biomass (60.33 g ≤ RMSE ≤ 163.59 g; 0.651 ≤ R2 ≤ 0.885) compared to leaf biomass (12.62 g ≤ RMSE ≤ 35.04 g; 0.380 ≤ R2 ≤ 0.735), as has been reported by others. For short-stature trees, leaf biomass predictions resulted in similar model fits (18.21 g ≤ RMSE ≤ 70.0 g; 0.702 ≤ R2 ≤ 0.882) compared to branch biomass (6.88 g ≤ RMSE ≤ 45.08 g; 0.736 ≤ R2 ≤ 0.923) and only slightly better model fits for stem biomass (30.87 g ≤ RMSE ≤ 11.72 g; 0.887 ≤ R2 ≤ 0.960), which suggests that leaf AGB of short-stature trees (<4.5 m) can be more accurately predicted using cross-sectional area as opposed to diameter at breast height for tall-stature trees. Our multi-species shrub and short-stature tree allometric models showed promising results for predicting plant component AGB, which can be utilized for remote sensing applications where plant functional types cannot always be distinguished. This study provides critical information on plant AGB allocation as well as component AGB modeling, required for understanding boreal AGB and aboveground carbon pools within the dynamic and rapidly changing Taiga Plains and Taiga Shield ecozones. In addition, the structural information and component AGB equations are important for integrating shrubs and short-stature tree AGB into carbon accounting strategies in order to improve our understanding of the rapidly changing boreal ecosystem function.


2018 ◽  
Vol 37 (7) ◽  
pp. 691-711 ◽  
Author(s):  
Analuddin Kangkuso ◽  
Sahadev Sharma ◽  
Jamili Jamili ◽  
Andi Septiana ◽  
Idin Sahidin ◽  
...  

2021 ◽  
Author(s):  
Anani Morilha Zanini ◽  
Rafaella Carvalho Mayrinck ◽  
Simone Aparecida Vieira ◽  
Ricardo Ribeiro Rodrigues

2016 ◽  
Vol 11 (1) ◽  
Author(s):  
Adéyèmi Chabi ◽  
Sven Lautenbach ◽  
Vincent Oladokoun Agnila Orekan ◽  
Nicholas Kyei‑Baffour

2016 ◽  
Vol 40 (2) ◽  
pp. 279-288 ◽  
Author(s):  
Maria Luiza Franceschi Nicodemo ◽  
Marcelo Dias Muller ◽  
Antônio Aparecido Carpanezzi ◽  
Vanderley Porfírio-da-Silva

ABSTRACT The objective of this study was to select allometric models to estimate total and pooled aboveground biomass of 4.5-year-old capixingui trees established in an agrisilvicultural system. Aboveground biomass distribution of capixingui was also evaluated. Single- (diameter at breast height [DBH] or crown diameter or stem diameter as the independent variable) and double-entry (DBH or crown diameter or stem diameter and total height as independent variables) models were studied. The estimated total biomass was 17.3 t.ha-1, corresponding to 86.6 kg per tree. All models showed a good fit to the data (R2ad > 0.85) for bole, branches, and total biomass. DBH-based models presented the best residual distribution. Model lnW = b0 + b1* lnDBH can be recommended for aboveground biomass estimation. Lower coefficients were obtained for leaves (R2ad > 82%). Biomass distribution followed the order: bole>branches>leaves. Bole biomass percentage decreased with increasing DBH of the trees, whereas branch biomass increased.


Sign in / Sign up

Export Citation Format

Share Document