leaf biomass
Recently Published Documents


TOTAL DOCUMENTS

432
(FIVE YEARS 165)

H-INDEX

29
(FIVE YEARS 6)

Author(s):  
Rachel E. Schattman ◽  
Alicyn Smart ◽  
Sean Birkel ◽  
Haley Jean ◽  
Kallol Barai ◽  
...  

It is well established that the interacting effects of temperature and precipitation will alter agroecological systems on a global scale. These shifts will influence the fitness of specialty crops, specifically strawberries (Fragaria x ananassa), an important crop in the Northeastern United States. In this study, four precipitation scenarios were developed that are representative of current and probable-future growing season precipitation patterns. Using a precipitation simulator, we tested these scenarios on potted day neutral strawberries. This study generated four primary results: (1) though treatments received different amounts of precipitation, little difference was observed in soil volumetric water content or temperature. However, treatments designed to simulate future conditions were more likely those designed to simulate current conditions to have higher nitrate-in-leachate (N-leachate) concentrations; (2) neither total precipitation nor seasonable distribution were associated with foliar or root disease pressure; (3) while there was a slightly higher chance that photosynthetic potential and capacity would be higher in drier conditions, little difference was observed in the effects on chlorophyll concentration, and no water stress was detected in any treatment; and (4) leaf biomass was likely more affected by total rather than seasonal distribution of precipitation, but interaction between changing rainfall distribution and seasonal totals is likely to be an important driver of root biomass development in the future.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2682
Author(s):  
Eugenia S. Mardanova ◽  
Roman Y. Kotlyarov ◽  
Nikolai V. Ravin

The development of recombinant vaccines against SARS-CoV-2 is required to eliminate the COVID-19 pandemic. We reported the expression of a recombinant protein Flg-RBD comprising receptor binding domain of SARS-CoV-2 spike glycoprotein (RBD) fused to flagellin of Salmonella typhimurium (Flg), known as mucosal adjuvant, in Nicotiana benthamiana plants. The fusion protein, targeted to the cytosol, was transiently expressed using the self-replicating vector pEff based on potato virus X genome. The recombinant protein Flg-RBD was expressed at the level of about 110–140 μg per gram of fresh leaf tissue and was found to be insoluble. The fusion protein was purified using metal affinity chromatography under denaturing conditions. To increase the yield of Flg-RBD, the flow-through fraction obtained after loading of the protein sample on the Ni-NTA resin was re-loaded on the sorbent. The yield of Flg-RBD after purification reached about 100 μg per gram of fresh leaf tissue and the purified protein remained soluble after dialysis. The control flagellin was expressed in a soluble form and its yield after purification was about 300 μg per gram of fresh leaf biomass. Plant-produced Flg-RBD protein could be further used for the development of intranasal recombinant mucosal vaccines against COVID-19.


Author(s):  
V. Vasileva ◽  
N. Dinev ◽  
I. Mitova

Background: Potassium fertilization shows beneficial effect on formation of tomato vegetative biomass and productivity. The purpose of this study was to determine the extent to which split potassium application and seedling temperature regime affects the growth parameters (leaf number, leaf area, fresh leaf weight and LAI) and yield of various tomato cultivars. Methods: A pot experiment was conducted to investigate the impact of single dose and split potassium fertilization treatments, cultivar specifics and seedling temperature regime on growth parameters and yield of tomato. Ten high yielding classic round shape tomato cultivars with determinate growth habitat were planted on Fluvisol. Single and split potassium fertilization treatments were tested. Result: The seedlings growth temperature regime and splitting the potassium fertilization treatment did not have a significant effect on the development of leaf biomass in tomato plants. Results revealed that leaf number, leaf area, fresh leaf weight and LAI of tomato plants was significantly affected by the cultivar genetic factor. Tomato yield were significantly affected by cultivars and split potassium fertilization treatments. Cultivars that measured the highest leaf area, fresh leaf weight and LAI and were also the highest yielding ones. A positive correlation between LAI and tomato fruit yield was observed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tarlan Mamedov ◽  
Irem Gurbuzaslan ◽  
Damla Yuksel ◽  
Merve Ilgin ◽  
Gunay Mammadova ◽  
...  

The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread to more than 222 countries and has put global public health at high risk. The world urgently needs a safe, cost-effective SARS-CoV-2 vaccine as well as therapeutic and antiviral drugs to combat COVID-19. Angiotensin-converting enzyme 2 (ACE2), as a key receptor for SARS-CoV-2 infections, has been proposed as a potential therapeutic tool in patients with COVID-19. In this study, we report a high-level production (about ∼0.75 g/kg leaf biomass) of human soluble (truncated) ACE2 in the Nicotiana benthamiana plant. After the Ni-NTA single-step, the purification yields of recombinant plant produced ACE2 protein in glycosylated and deglycosylated forms calculated as ∼0.4 and 0.5 g/kg leaf biomass, respectively. The plant produced recombinant human soluble ACE2s successfully bind to the SARS-CoV-2 spike protein. Importantly, both deglycosylated and glycosylated forms of ACE2 are stable at increased temperatures for extended periods of time and demonstrated strong anti-SARS-CoV-2 activities in vitro. The half maximal inhibitory concentration (IC50) values of glycosylated ACE2 (gACE2) and deglycosylated ACE2 (dACE2) were ∼1.0 and 8.48 μg/ml, respectively, for the pre-entry infection, when incubated with 100TCID50 of SARS-CoV-2. Therefore, plant produced soluble ACE2s are promising cost-effective and safe candidates as a potential therapeutic tool in the treatment of patients with COVID-19.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1693
Author(s):  
Jonathan Jürgensen ◽  
Jan Muhr ◽  
Alexander Knohl

The oxidative ratio (OR) of organic material integrates the ratio of CO2 sequestered in biomass vs. O2 produced over longer timescales, but the temporal and spatial variability within a single ecosystem has received very limited attention. Between October 2017 and October 2019, we repeatedly sampled leaves, twigs, bark, outer stem wood, understorey vegetation and litter in a temperate beech forest close to Leinefelde (Germany) for OR measurements across a seasonal and spatial gradient. Plant component OR ranged from 1.004 ± 0.010 for fine roots to 1.089 ± 0.002 for leaves. Inter- and intra-annual differences for leaf and twig OR exist, but we found no correlation with sampling height within the canopy. Leaf OR had the highest temporal variability (minimum 1.069 ± 0.007, maximum 1.098 ± 0.002). This was expected, since leaf biomass of deciduous trees only represents the signal of the current growing season, while twig, stem and litter layer OR integrate multiple years. The sampling years 2018 and 2019 were unusually hot and dry, with low water availability in the summer, which could especially affect the August leaf OR. Total above-ground OR is dominated by the extremely stable stem OR and shows little variation (1.070 ± 0.02) throughout the two sampling years, even when facing extreme events.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1686
Author(s):  
Haoyun Wang ◽  
Feng Wu ◽  
Min Li ◽  
Daqu Liang ◽  
Guijie Ding

Pines have heteroblastic foliage (primary and secondary needles) during seedling stage, but how heteroblastic foliage affects carbon storage and biomass accumulation, contributing to seedling quality, is unclear. We investigated the influences of heteroblastic foliage on photosynthetic physiological characteristics, non-structural carbohydrate (NSC) and biomass accumulation in current-year seedlings; the key factors determining biomass accumulation were mainly determined by principal component screening, Spearman correlation, and path analysis. The results indicated that (1) primary needles have high photosynthetic pigments (chlorophyll a and total chlorophyll), net photosynthetic rates (Pn), the potential maximum photochemical efficiency (Fv/Fm), and leaf instantaneous water use efficiency (WUEi), whereas higher non-photochemical quenching (NPQ) suggested that sudden light increases induce the initiation of quenching mechanism in primary needles; additionally, secondary needles had a lower transpiration rate (Tr), limiting stomata (Ls), and light saturation point. (2) Secondary needles promoted soluble sugar (fructose and glucose) increases in leaves compared to that of primary needles and increased the leaf biomass accumulation (from 47.06% to 54.30%), enhancing the overall ability of photosynthetic organs; additionally, secondary needles can enhance the proportion of starch storage in the roots, and NSC accumulation was significantly increasing in the seedling leaves and roots. (3) Photosynthetic pigments (carotenoids, chlorophyll a, and total chlorophyll) had direct positive effects on primary needle seedling (PNS) biomass and promoted biomass by indirectly increasing soluble sugar synthesis in the stems. The Pn was the main physiological factor determining PNS biomass accumulation. In addition, the WUEi, Ls, and NPQ had direct negative effects on PNS biomass accumulation, inhibiting photosynthesis to limit seedling growth. Considering the functional traits in heteroblastic foliage is necessary when assessing different leaf types of Pinus massoniana (Lamb.) seedlings, in particular those threats implicated in light, water, and temperature relations. Our results can be beneficial to guide the establishment of seedling management and afforestation measures.


2021 ◽  
Vol 155 ◽  
pp. 106294
Author(s):  
Ilja Vuorinne ◽  
Janne Heiskanen ◽  
Marianne Maghenda ◽  
Lucas Mwangala ◽  
Petter Muukkonen ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 419-428
Author(s):  
MUNISH KAUNDAL ◽  
RAKESH KUMAR

Valeriana jatamansi is an important medicinal and aromatic plant used as sedative in modern  and traditional medicines butthere is dearth of literature regarding how elevated CO2 and temperature affect on this plant. Therefore,an experiment was conducted to study the effect of elevated CO2 (550±50 µmol mol-1) and elevated temperature (2.5±0.5°C above ambient) and vermicompost on growth, phenology and biomass accumulation in V. jatamansi under Free Air CO2 Enrichment (FACE) and Free Air TemperatureIncrement (FATI) facilities at Palampur, India, during 2013-2015. Growth parameters and biomass accumulation into different parts were observed at 4, 12 and 16 months after exposure (MAE). Plant height, total dry biomass and leaf area plant -1 increased in elevated CO2 treatment applied with vermicompost as compared to the other treatments. Elevated CO2 significantly enhanced leaf area (3.5-23.5%), leaf biomass (12.7-33.2%), stem (15.3-15.6%), root (3.2-72.5%), rhizome (2.1-42.2%) and total biomass (7.7-52.7%), whereas elevated temperature increased aboveground biomass (15.0-45.3%), belowground biomass (11.6-55.5%) and total biomass (12.4-7.9%), respectively, as compared to ambient. Phenological stages were advanced by 1.2-3.9 days under FACE and FATI as compared to ambient. The results indicate that aboveground, belowground and total biomass increased under elevated CO2 and elevated temperature as compared to ambient. 


2021 ◽  
Vol 12 ◽  
Author(s):  
Sangita Dixit ◽  
Mahendra Gaur ◽  
Enketeswara Subudhi ◽  
Rajesh Kumar Sahoo ◽  
Suchanda Dey ◽  
...  

In the present study, we explored four different geothermal spots of the Deulajhari spring cluster at a proximity of 10–20 meters with temperatures of 43 to 65°C to unravel their genesis, bacterial diversity and CAZyme potential. However, minor variations in physicochemical properties; TOC, sodium, chloride, zinc and nitrate were observed, including the pH of the spring openings. Illumina based amplicon sequencing revealed Firmicutes, Proteobacteria and Chloroflexi as the major bacterial phylum with higher abundance in the DJ04 sample. The alpha diversity of all the springs was almost same, whereas beta diversity revealed variations in the degree of uniqueness of OTUs at different temperatures. Statistical analysis established a positive correlation between sulfur content with Heliobacterium, Thermodesulfovibrio, Thermodesulfobacterium and Herpetosipho as well as TOC and HCO3 with Thermoanaerobacter, Desulfovibrio, Candidatus solibacter and Dehalogenimona. The major hydrocarbon family genes and Carbohydrate Active Enzyme pathways were predicted to be highest in DJ04 with elevated concentrations of HCO3 and TOC. Higher homogeneity in geo-physicochemical and microbial features direct the possibility of the common origin of these springs through plumbing systems. However, the minor variations in diversity and functionality were due to variations in temperature in spring openings through the mixing of subsurface water contaminated with carbohydrates from leaf biomass litter. Functional characterization of the thermophilic bacteria of this spring provides essential scope for further industrial applications. The biogeochemical reasons hypothesized for the genesis of unique multiple openings in the cluster are also of interest to conservation scientists for taking measures toward necessary laws and regulations to protect and preserve these springs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260337
Author(s):  
Genzhu Wang ◽  
Guoyong Tang ◽  
Danbo Pang ◽  
Yuguo Liu ◽  
Long Wan ◽  
...  

Biomass and carbon (C) distribution are suggested as strategies of plant responses to resource stress. Understanding the distribution patterns of biomass and C is the key to vegetation restoration in fragile ecosystems, however, there is limited understanding of the intraspecific biomass and C distributions of shrubs resulting from plant interactions in karst areas. In this study, three vegetation restoration types, a Dodonaea viscosa monoculture (DM), a Eucalyptus maideni and D. viscosa mixed-species plantation (EDP) and a Pinus massoniana and D. viscosa mixed-species plantation (PDP), were selected to determine the effects of plant interactions on the variations in the C distributions of D. viscosa among the three vegetation restoration types following 7 years of restoration. The results showed that: (1) plant interactions decreased the leaf biomass fraction. The interaction of P. massoniana and D. viscosa decreased the branch biomass fraction and increased the stem and root biomass fraction, but not the interaction of E. maideni and D. viscosa. Plant interactions changed the C concentrations of stems and roots rather than those of leaves and branches. (2) Plant interactions affected the soil nutrients and forest characteristics significantly. Meanwhile, the biomass distribution was affected by soil total nitrogen, clumping index and gap fraction; the C concentrations were influenced by the leaf area index and soil total phosphorus. (3) The C storage proportions of all the components correlated significantly with the proportion of biomass. Our results suggested that both the biomass distribution and C concentration of D. viscosa were affected by plant interactions, however, the biomass fraction not the C concentration determines the C storage fraction characteristics for D. viscosa.


Sign in / Sign up

Export Citation Format

Share Document