scholarly journals Onset of Thermal Instabilities in the Plane Poiseuille Flow of Weakly Elastic Fluids: Viscous Dissipation Effects

Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 432
Author(s):  
Silvia C. Hirata ◽  
Mohamed Najib Ouarzazi

The onset of thermal instabilities in the plane Poiseuille flow of weakly elastic fluids is examined through a linear stability analysis by taking into account the effects of viscous dissipation. The destabilizing thermal gradients may come from the different temperatures imposed on the external boundaries and/or from the volumetric heating induced by viscous dissipation. The rheological properties of the viscoelastic fluid are modeled using the Oldroyd-B constitutive equation. As in the Newtonian fluid case, the most unstable structures are found to be stationary longitudinal rolls (modes with axes aligned along the streamwise direction). For such structures, it is shown that the viscoelastic contribution to viscous dissipation may be reduced to one unique parameter: γ=λ1(1−Γ), where λ1 and Γ represent the relaxation time and the viscosity ratio of the viscoelastic fluid, respectively. It is found that the influence of the elasticity parameter γ on the linear stability characteristics is non-monotonic. The fluid elasticity stabilizes (destabilizes) the basic Poiseuille flow if γ<γ* (γ>γ*) where γ* is a particular value of γ that we have determined. It is also shown that when the temperature gradient imposed on the external boundaries is zero, the critical Reynolds number for the onset of such viscous dissipation/viscoelastic-induced instability may be well below the one needed to trigger the pure hydrodynamic instability in weakly elastic solutions.

2011 ◽  
Vol 681 ◽  
pp. 499-514 ◽  
Author(s):  
A. BARLETTA ◽  
M. CELLI ◽  
D. A. NIELD

The thermal instability of the plane Poiseuille flow as a consequence of the effect of viscous dissipation is investigated. No external temperature difference is assumed in the environment; the lower boundary is considered adiabatic, while the upper boundary is isothermal. Thus, the sole cause of the unstable thermal stratification is the flow rate, through the volumetric heating induced by the viscous dissipation. A linear stability analysis is carried out numerically by the analysis of normal modes perturbing the basic flow with different inclinations. The study of cases with different Prandtl numbers and Gebhart numbers suggests that the most unstable perturbations are the longitudinal rolls, namely the normal modes with a wave vector perpendicular to the basic flow direction. A possible comparison with the hydrodynamic instability of the plane Poiseuille flow, described by the Orr–Sommerfeld eigenvalue problem is proposed. This comparison, when referred to high values of the Prandtl number, reveals that the dissipation instability may be effective at a Reynolds number smaller than that needed for the onset of the hydrodynamic instability.


Author(s):  
Lei Xu ◽  
Zvi Rusak

Abstract The linear stability of plane Poiseuille flow through a finite-length channel is studied. A weakly-divergence-free basis finite element method with SUPG stabilization is used to formulate the weak form of the problem. The linear stability characteristics are studied under three possible inlet-outlet boundary conditions and the corresponding perturbation kinetic energy transfer mechanisms are investigated. Active transfer of perturbation kinetic energy at the channel inlet and outlet, energy production due to convection and dissipation at the flow bulk provide a new perspective in understanding the distinct stability characteristics of plane Poiseuille flow under various boundary conditions.


1988 ◽  
Vol 31 (11) ◽  
pp. 3225 ◽  
Author(s):  
Stergios G. Yiantsios ◽  
Brian G. Higgins

2011 ◽  
Vol 318 (2) ◽  
pp. 022033
Author(s):  
Maurizio Quadrio ◽  
Fulvio Martinelli ◽  
Peter J Schmid

2001 ◽  
Vol 13 (4) ◽  
pp. 983-990 ◽  
Author(s):  
Simon P. Godfrey ◽  
David C. Samuels ◽  
Carlo F. Barenghi

Sign in / Sign up

Export Citation Format

Share Document