scholarly journals Toward Workable and Cost-Efficient Monitoring of Unstable Rock Compartments with Ambient Noise

Geosciences ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 242
Author(s):  
Pierre Bottelin ◽  
Laurent Baillet ◽  
Aurore Carrier ◽  
Eric Larose ◽  
Denis Jongmans ◽  
...  

Ambient Vibration-Based Structural Health Monitoring (AVB–SHM) studies on prone-to-fall rock compartments have recently succeeded in detecting both pre-failure damaging processes and reinforcement provided by bolting. The current AVB–SHM instrumentation layout is yet generally an overkill, creating cost and power issues and sometimes requiring advanced signal processing techniques. In this article, we paved the way toward an innovative edge-computing approach tested on ambient vibration records made during the bolting of a ~760 m3 limestone rock column (Vercors, France). First, we established some guidelines for prone-to-fall rock column AVB–SHM by comparing several basic, computing-efficient, seismic parameters (i.e., Fast Fourier Transform, Horizontal to Vertical and Horizontal to Horizontal Spectral Ratios). All three parameters performed well in revealing the unstable compartment’s fundamental resonance frequency. HHSR appeared as the most consistent spectral estimator, succeeding in revealing both the fundamental and higher modes. Only the fundamental mode should be trustfully monitored with HVSR since higher peaks may be artifacts. Then, the first application of a novelty detection algorithm on an unstable rock column AVB–SHM case study showed the following: the feasibility of automatic removing the adverse thermomechanical fluctuations in column’s dynamic parameters based on machine learning, as well as the systematic detection of clear, permanent change in column’s dynamic behavior after grout injection and hardening around the bolts (i1 and i2). This implementation represents a significant workload reduction, compared to physical-based algorithms or numerical twin modeling, and shows better robustness with regard to instrumentation gaps. We believe that edge-computing monitoring systems combining basic seismic signal processing techniques and automatic detection algorithms could help facilitate AVB–SHM of remote natural structures such as prone-to-fall rock compartments.

2017 ◽  
Author(s):  
Sujeet Patole ◽  
Murat Torlak ◽  
Dan Wang ◽  
Murtaza Ali

Automotive radars, along with other sensors such as lidar, (which stands for “light detection and ranging”), ultrasound, and cameras, form the backbone of self-driving cars and advanced driver assistant systems (ADASs). These technological advancements are enabled by extremely complex systems with a long signal processing path from radars/sensors to the controller. Automotive radar systems are responsible for the detection of objects and obstacles, their position, and speed relative to the vehicle. The development of signal processing techniques along with progress in the millimeter- wave (mm-wave) semiconductor technology plays a key role in automotive radar systems. Various signal processing techniques have been developed to provide better resolution and estimation performance in all measurement dimensions: range, azimuth-elevation angles, and velocity of the targets surrounding the vehicles. This article summarizes various aspects of automotive radar signal processing techniques, including waveform design, possible radar architectures, estimation algorithms, implementation complexity-resolution trade-off, and adaptive processing for complex environments, as well as unique problems associated with automotive radars such as pedestrian detection. We believe that this review article will combine the several contributions scattered in the literature to serve as a primary starting point to new researchers and to give a bird’s-eye view to the existing research community.


Sign in / Sign up

Export Citation Format

Share Document