solar concentrators
Recently Published Documents


TOTAL DOCUMENTS

946
(FIVE YEARS 242)

H-INDEX

60
(FIVE YEARS 14)

2022 ◽  
Vol 9 (1) ◽  
pp. 3-10
Author(s):  
Connor Atkinson

Phthalocyanine molecules have the potential to be used in select Dye Sensitized Solar Cells (DSSCs) and Luminescent Solar Concentrators (LSCs), due to UV-Vis absorbance in the 300-450 (nm) Soret Band, corresponding to π HOMO-1 to π* LUMO transition and 550-690 (nm) Q-band, corresponding to π HOMO to π* LUMO transitions. In this study Tetranitro Zinc (II) Phthalocyanine is synthesized via base catalysis before the product is characterized via IR, 1H NMR & UV-Vis analysis. Assessing the desirability of the Tetranitro Zinc (II) Phthalocyanine as a solar organic semiconducting dye in DSSCs and LSCs. The desirability is assessed by novel computational DFT calculations, of the aggregation binding mode to deduce if Aggregation-Caused Quenching (ACQ) is occurring in the aggregated sample. ACQ is known to reduce DSSCs and LSCs generation of useful photo-active current. Aggregation-Caused Quenching (ACQ) is mathematically indicated in Phthalocyanine aggregation and Tetranitro Zinc (II) Phthalocyanine’s desirability is assessed for further use in DSSCs and LSCs.


Author(s):  
Jiancang Chen ◽  
Haiguang Zhao ◽  
Zhilin Li ◽  
Xiujian Zhao ◽  
Xiao Gong

Luminescent solar concentrators (LSCs) have been widely considered to be promising large-scale sunlight collectors for photovoltaics (PV) due to their low cost and applicability to building-integrated photovoltaics (BIPV). However, low...


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 585
Author(s):  
Maria Antonietta Ferrara ◽  
Fabio Borbone ◽  
Giuseppe Coppola

Global warming is a very topical issue, therefore the search for new renewable energy sources is considered of fundamental importance. Among these, solar energy offers great possibilities considering that the amount of sunlight hitting the Earth ‘s surface in an hour and a half is enough to meet the world’s electricity consumption for a complete year. Generally, solar concentrators are used to collect the solar radiation and to concentrate it at a single focal point. These devices consist in a set of mirrors or mechanical structures to reduce the area of a photovoltaic cell, which is typically very expensive. Volume transmission phase holographic optical elements could be opportunely designed and realized to obtain a simple, lightweight, compact and inexpensive planar solar concentrator. With the aim of bringing scientific attention to this still developing topic, in this work we critically report a complete investigation on a new photopolymeric material obtained by sol-gel reactions used as possible recording material for volume holographic solar concentrators; as a proof of concept, both terrestrial and extreme environments, such as space, are considered as potential applications.


2021 ◽  
Vol 2 (4) ◽  
pp. 545-552
Author(s):  
Yujian Sun ◽  
Yongcao Zhang ◽  
Yuxin Li ◽  
Yilin Li

Luminescent solar concentrators (LSCs) are considered promising in their application as building-integrated photovoltaics (BIPVs). However, they suffer from low performance, especially in large-area devices. One of the key issues is the self-absorption of the luminophores. In this report, we focus on the study of self-absorption in perovskite-based LSCs. Perovskite nanocrystals (NCs) are emerging luminophores for LSCs. Studying the self-absorption of perovskite NCs is beneficial to understanding fundamental photon transport properties in perovskite-based LSCs. We analyzed and quantified self-absorption properties of perovskite NCs in an LSC with the dimensions of 6 in × 6 in × 1/4 in (152.4 mm × 152.4 mm × 6.35 mm) using three approaches (i.e., limited illumination, laser excitation, and regional measurements). The results showed that a significant number of self-absorption events occurred within a distance of 2 in (50.8 mm), and the photo surface escape due to the repeated self-absorption was the dominant energy loss mechanism.


2021 ◽  
Author(s):  
GANAPATI SHANKARLING ◽  
Mahesh Jachak ◽  
Rupali Bhise ◽  
Ankur Chaturvedi ◽  
Vidula Kamble

Abstract This article presents two highly fluorescent donor- π -acceptor (D-π-A) moiety containing an electron-donating carbazole and phenothiazine donors fused with electron-withdrawing pyrrolo-quinoline acceptor dyes, PQC and PQPT. We also discussed the polymerization and film-forming process of dye PQC and PQPT doped in poly (methyl methacrylate) (PMMA) and polystyrene (PS) polymer to find their optical applications in polymer-based technology. We investigated the fluorescent properties of dyes PQC and PQPT from 0.01 – 1 wt. % in poly(methyl methacrylate) (PMMA). We also investigated the changes in the spectrum shape and shift in wavelength with changes in poly(methyl methacrylate) (PMMA), polystyrene (PS), and TiO2 doped in polystyrene (PS/TiO2). The analysis of surface morphology of prepared polymer samples was done with the help of a scanning electron microscope. The thermal and photostability of synthesized dyes in poly (methyl methacrylate) (PMMA), polystyrene (PS), and TiO2 doped in polystyrene (PS/TiO2) were investigated to get detailed information owing to the application of fluorescent polymers in the field of optoelectronic, nanohybrid coatings in solar concentrators, etc.


Sign in / Sign up

Export Citation Format

Share Document