scholarly journals Hydrogen Jet Fire from a Thermally Activated Pressure Relief Device (TPRD) from Onboard Storage in a Naturally Ventilated Covered Car Park

Hydrogen ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 343-361
Author(s):  
Harem Hussein ◽  
Síle Brennan ◽  
Vladimir Molkov

Hydrogen jet fires from a thermally activated pressure relief device (TPRD) on onboard storage are considered for a vehicle in a naturally ventilated covered car park. Computational Fluid Dynamics was used to predict behaviour of ignited releases from a 70 MPa tank into a naturally ventilated covered car park. Releases through TPRD diameters 3.34, 2 and 0.5 mm were studied to understand effect on hazard distances from the vehicle. A vertical release, and downward releases at 0°, 30° and 45° for TPRD diameters 2 and 0.5 mm were considered, accounting for tank blowdown. direction of a downward release was found to significantly contribute to decrease of temperature in a hot cloud under the ceiling. Whilst the ceiling is reached by a jet exceeding 300 °C for a release through a TPRD of 2 mm for inclinations of either 0°, 30° or 45°, an ignited release through a TPRD of 0.5 mm and angle of 45° did not produce a cloud with a temperature above 300 °C at the ceiling during blowdown. The research findings, specifically regarding the extent of the cloud of hot gasses, have implications for the design of mechanical ventilation systems.

Author(s):  
Sing Ngie David Chua ◽  
Boon Kean Chan ◽  
Soh Fong Lim

Thermal accumulation in a car cabin under direct exposure to sunlight can be extremely critical due to the risk of heatstroke especially to children who are left unattended in the car. There are very limited studies in the literature to understand the thermal behaviour of a car that is parked in an open car park space and the findings are mostly inconsistent among researchers. In this paper, the studies of thermal accumulation in an enclosed vehicle by experimental and computational fluid dynamics simulation approaches were carried out. An effective and economical method to reduce the heat accumulation was proposed. Different test conditions such as fully enclosed, fully enclosed with sunshade on front windshield and different combinations of window gap sizes were experimented and presented. Eight points of measurement were recorded at different locations in the car cabin and the results were used as the boundary conditions for the three-dimensional computational fluid dynamics simulation. The computational fluid dynamics software used was ANSYS FLUENT 16.0. The results showed that the application of sunshade helped to reduce thermal accumulation at car cabin by 11.5%. The optimum combination of windows gap size was found to be with 4-cm gap on all four windows which contributed to a 21.1% reduction in car cabin temperature. The results obtained from the simulations were comparable and in agreement with the experimental tests.


2020 ◽  
Vol 97 (1) ◽  
pp. 125-134
Author(s):  
V.I. Trokhaniak ◽  
◽  
I.L. Rogovskii ◽  
L.L. Titova ◽  
P.S. Popyk ◽  
...  

The increase in the productivity of poultry plants is connected with the necessity to create the optimal controlled environment in poultry houses. This problem is of prime importance due to the decrease of poultry plant productivity caused by the imperfection of the existing controlled environment systems. The paper presents the improved environment control system in a poultry house. The processes of heat- and mass-exchange in the developed heat-exchangers for various ventilation systems have been investigated. Computational Fluid Dynamics analysis of the heat-exchangers of two various designs for tunnel and side ventilation systems has been carried out. The fields of velocities, temperatures and pressures in the channels under study have been obtained. The conditions of a hydrodynamic flow in the channels have been analyzed. The intensity of heattransfer between a hot heat carrier and a cold one through their separating wall has been estimated. The most efficient heat-exchanging apparatus has been determined and the application potential of such a design has been substantiated. The aim of the research is the development and numerical modelling of a shell-and-tube heat-exchanger of a new design as an element of environment control system used in various types of ventilations systems in summer seasons.


2018 ◽  
Vol 159 (1) ◽  
pp. 35-41
Author(s):  
Justin C. Sowder ◽  
Mar Janna Dahl ◽  
Kaitlin R. Zuspan ◽  
Kurt H. Albertine ◽  
Donald M. Null ◽  
...  

Objective To (1) compare physiologic changes during rigid bronchoscopy during spontaneous and mechanical ventilation and (2) evaluate the efficacy of a helium-oxygen (heliox) gas mixture as compared with room air during rigid bronchoscopy. Study Design Crossover animal study evaluating physiologic parameters during rigid bronchoscopy. Outcomes were compared with predicted computational fluid analysis. Setting Simulated ventilation via computational fluid dynamics analysis and term lambs undergoing rigid bronchoscopy. Methods Respiratory and physiologic outcomes were analyzed in a lamb model simulating bronchoscopy during foreign body aspiration to compare heliox with room air. The main outcome measures were blood oxygen saturation, heart rate, blood pressure, partial pressure of oxygen, and partial pressure of carbon dioxide. Computational fluid dynamics analysis was performed with SOLIDWORKS within a rigid pediatric bronchoscope during simulated ventilation comparing heliox with room air. Results For room air, lambs desaturated within 3 minutes during mechanical ventilation versus normal oxygen saturation during spontaneous ventilation ( P = .01). No improvement in respiratory outcomes was seen between heliox and room air during mechanical ventilation. Computational fluid dynamics analysis demonstrates increased turbulence within size 3.5 bronchoscopes when comparing heliox and room air. Meaningful comparisons could not be made due to the intolerance of the lambs to heliox in vivo. Conclusion During mechanical ventilation on room air, lambs desaturate more quickly during rigid bronchoscopy on settings that should be adequate. Heliox does not improve ventilation during rigid bronchoscopy.


2017 ◽  
Vol 37 (3) ◽  
pp. 414-425 ◽  
Author(s):  
Roberto C. da Silva ◽  
José J. F. Cordeiro Júnior ◽  
Héliton Pandorfi ◽  
Ricardo B. Vigoderis ◽  
Cristiane Guiselini

Sign in / Sign up

Export Citation Format

Share Document