Hydrogen
Latest Publications


TOTAL DOCUMENTS

31
(FIVE YEARS 31)

H-INDEX

0
(FIVE YEARS 0)

Published By MDPI AG

2673-4141

Hydrogen ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 28-42
Author(s):  
Hyung-Seok Kang ◽  
Jongtae Kim ◽  
Seong-Wan Hong

We performed a hydrogen combustion analysis in the Advanced Power Reactor 1400 MWe (APR1400) containment during a severe accident initiated by a small break loss of coolant accident (SBLOCA) which occurred at a lower part of the cold leg using a multi-dimensional hydrogen analysis system (MHAS) to confirm the integrity of the APR1400 containment. The MHAS was developed by combining MAAP, GASFLOW, and COM3D to simulate hydrogen release, distribution and combustion in the containment of a nuclear power plant during the severe accidents in the containment of a nuclear power reactor. The calculated peak pressure due to the flame acceleration by the COM3D, using the GASFLOW results as an initial condition of the hydrogen distribution, was approximately 555 kPa, which is lower than the fracture pressure 1223 kPa of the APR1400 containment. To induce a higher peak pressure resulted from a strong flame acceleration in the containment, we intentionally assumed several things in developing an accident scenario of the SBLOCA. Therefore, we may judge that the integrity of the APR1400 containment can be maintained even though the hydrogen combustion occurs during the severe accident initiated by the SBLOCA.


Hydrogen ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 1-27
Author(s):  
Abdulaziz Alturki

The substantial growth in shale-derived natural gas production in the US has caused significant changes in the chemical and petrochemical markets. Ethylene production of ethane and naphtha via steam cracking is one of the most energy- and emission-intensive activities in chemical manufacturing. High operating temperatures, high reaction endothermicity, and complex separation create high energy demands as well as considerable CO2 emissions. In this study, a demonstration of a transformational methane-to-ethylene process that offers lower emissions using energy optimization and a CO2 minimum-emission approach is presented. The comparisons of different reforming processes suggest that the dry reforming of methane has a negative carbon footprint at low syngas ratios of 1 and below, and that additional carbon emissions can be reduced using integrated heating and cooling utilities, resulting in a 99.24 percent decrease in CO2. A process design implemented to convert methane into value-added chemicals with minimum CO2 emissions is developed.


Hydrogen ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 444-460
Author(s):  
Grace Russell ◽  
Alexander Nenov ◽  
Hesham Kisher ◽  
John T. Hancock

Since the late 18th century, molecular hydrogen (H2) has been shown to be well tolerated, firstly in animals, and then in humans. However, although research into the beneficial effects of molecular hydrogen in both plant and mammalian physiology is gaining momentum, the idea of utilising this electrochemically neutral and non-polar diatomic compound for the benefit of health has yet to be widely accepted by regulatory bodies worldwide. Due to the precise mechanisms of H2 activity being as yet undefined, the lack of primary target identification, coupled with difficulties regarding administration methods (e.g., dosage and dosage frequencies, long-term effects of treatment, and the patient’s innate antioxidant profile), there is a requirement for H2 research to evidence how it can reasonably and most effectively be incorporated into medical practice. This review collates and assesses the current information regarding the many routes of molecular hydrogen administration in animals and humans, whilst evaluating how targeted delivery methods could be integrated into a modern healthcare system.


Hydrogen ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 428-443
Author(s):  
Claudio Pistidda

Humanity is confronted with one of the most significant challenges in its history. The excessive use of fossil fuel energy sources is causing extreme climate change, which threatens our way of life and poses huge social and technological problems. It is imperative to look for alternate energy sources that can replace environmentally destructive fossil fuels. In this scenario, hydrogen is seen as a potential energy vector capable of enabling the better and synergic exploitation of renewable energy sources. A brief review of the use of hydrogen as a tool for decarbonizing our society is given in this work. Special emphasis is placed on the possibility of storing hydrogen in solid-state form (in hydride species), on the potential fields of application of solid-state hydrogen storage, and on the technological challenges solid-state hydrogen storage faces. A potential approach to reduce the carbon footprint of hydrogen storage materials is presented in the concluding section of this paper.


Hydrogen ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 414-427
Author(s):  
Atif Imdad ◽  
Alfredo Zafra ◽  
Victor Arniella ◽  
Javier Belzunce

It is well known that the presence of hydrogen decreases the mechanical properties of ferritic steels, giving rise to the phenomenon known as hydrogen embrittlement (HE). The sensitivity to HE increases with the strength of the steel due to the increase of its microstructural defects (hydrogen traps), which eventually increase hydrogen solubility and decrease hydrogen diffusivity in the steel. The aim of this work is to study hydrogen diffusivity in a 42CrMo4 steel submitted to different heat treatments—annealing, normalizing and quench and tempering—to obtain different microstructures, with a broad range of hardness levels. Electrochemical hydrogen permeation tests were performed in a modified Devanathan and Stachursky double-cell. The build-up transient methodology allowed the determination of the apparent hydrogen diffusion coefficient, Dapp, and assessment of its evolution during the progressive filling of the microstructural hydrogen traps. Consequently, the lattice hydrogen diffusion coefficient, DL, was determined. Optical and scanning electron microscopy (SEM) were employed to examine the steel microstructures in order to understand their interaction with hydrogen atoms. In general, the results show that the permeation parameters are strongly related to the steel hardness, being less affected by the type of microstructure.


Hydrogen ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 386-398
Author(s):  
Sergii Kashkarov ◽  
Dmitriy Makarov ◽  
Vladimir Molkov

The use of hydrogen storage tanks at 100% of nominal working pressure (NWP) is expected only after refuelling. Driving between refuellings is characterised by the state of charge SoC <100%. There is experimental evidence that Type IV tanks tested in a fire at initial pressures below 1/3 NWP, leaked without rupture. This paper aims at understanding this phenomenon. The numerical research has demonstrated that the heat transfer from fire through the composite overwrap at storage pressures below NWP/3 is sufficient to melt the polymer liner. This melting initiates hydrogen microleaks through the composite before it loses the load-bearing ability. The fire-resistance rating (FRR) is defined as the time to rupture in a fire of a tank without or with blocked thermally activated pressure relief device. The dependence of a FRR on the SoC is demonstrated for the tanks with defined material properties and volumes in the range of 36–244 L. A composite wall thickness variation is shown to cause a safety issue by reducing the tank’s FRR and is suggested to be addressed by tank manufacturers and OEMs. The effect of a tank’s burst pressure ratio on the FRR is investigated. Thermal parameters of the composite wall, i.e., decomposition heat and temperatures, are shown in simulations of a tank failure in a fire to play an important role in its FRR.


Hydrogen ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 377-385
Author(s):  
Mahdieh Safyari ◽  
Masoud Moshtaghi

The effect of ultrasonic shot peening on the environmental hydrogen embrittlement behavior of the 7075-T6 aluminum alloy is investigated. The 7075-T6 tensile specimens were treated by ultrasonic shot peening for 50 s. Surface residual stress and the depth of residual stress under the surface were evaluated using an X-ray diffractometer. Then, the specimens were tensile tested in humid air and dry nitrogen gas by the slow strain rate technique. The results showed that the ultrasonic shot-peened specimen has a superior hydrogen embrittlement resistance. Further, the ultrasonic shot peening changes the fracture mode from an intergranular fracture mode to the transgranular one. It was suggested that ultrasonic shot-peening has two effects on hydrogen embrittlement behavior; the distribution of hydrogen inside the surface layer by introducing dislocations/vacancies as hydrogen traps and reducing the normalized amount of hydrogen trapped per unit length of the grain boundary.


Hydrogen ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 362-376
Author(s):  
Ekaterina V. Shelepova ◽  
Aleksey A. Vedyagin

The hydrogen economy is expected to dominate in the nearest future. Therefore, the most hydrogen-containing compounds are considered as potential pure hydrogen sources in order to achieve climate neutrality. On the other hand, alkanes are widely used to produce industrially important monomers via various routes, including dehydrogenation processes. Hydrogen is being produced as a by-product of these processes, so the application of efficient separation of hydrogen from the reaction mixture can give double benefits. Implementation of the dehydrogenation processes in the catalytic membrane reactor is that case. Since the use of dense metal membranes, which possess the highest perm-selectivity towards hydrogen, is complicated in practice, the present research is aimed at the optimization of the porous membrane characteristics. By means of a mathematical modeling approach, the effects of pore diameter on the hydrogen productivity and purity for the cases of ethane and propane dehydrogenation processes were analyzed. The pore size value of 0.45 nm was found to be crucial as far as the diffusion of both the alkane and alkene molecules through the membrane takes place.


Hydrogen ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 343-361
Author(s):  
Harem Hussein ◽  
Síle Brennan ◽  
Vladimir Molkov

Hydrogen jet fires from a thermally activated pressure relief device (TPRD) on onboard storage are considered for a vehicle in a naturally ventilated covered car park. Computational Fluid Dynamics was used to predict behaviour of ignited releases from a 70 MPa tank into a naturally ventilated covered car park. Releases through TPRD diameters 3.34, 2 and 0.5 mm were studied to understand effect on hazard distances from the vehicle. A vertical release, and downward releases at 0°, 30° and 45° for TPRD diameters 2 and 0.5 mm were considered, accounting for tank blowdown. direction of a downward release was found to significantly contribute to decrease of temperature in a hot cloud under the ceiling. Whilst the ceiling is reached by a jet exceeding 300 °C for a release through a TPRD of 2 mm for inclinations of either 0°, 30° or 45°, an ignited release through a TPRD of 0.5 mm and angle of 45° did not produce a cloud with a temperature above 300 °C at the ceiling during blowdown. The research findings, specifically regarding the extent of the cloud of hot gasses, have implications for the design of mechanical ventilation systems.


Hydrogen ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 319-342
Author(s):  
Kanika Khanna ◽  
Nandni Sharma ◽  
Sandeep Kour ◽  
Mohd. Ali ◽  
Puja Ohri ◽  
...  

Hydrogen sulfide (H2S) is predominantly considered as a gaseous transmitter or signaling molecule in plants. It has been known as a crucial player during various plant cellular and physiological processes and has been gaining unprecedented attention from researchers since decades. They regulate growth and plethora of plant developmental processes such as germination, senescence, defense, and maturation in plants. Owing to its gaseous state, they are effectively diffused towards different parts of the cell to counterbalance the antioxidant pools as well as providing sulfur to cells. H2S participates actively during abiotic stresses and enhances plant tolerance towards adverse conditions by regulation of the antioxidative defense system, oxidative stress signaling, metal transport, Na+/K+ homeostasis, etc. They also maintain H2S-Cys-cycle during abiotic stressed conditions followed by post-translational modifications of cysteine residues. Besides their role during abiotic stresses, crosstalk of H2S with other biomolecules such as NO and phytohormones (abscisic acid, salicylic acid, melatonin, ethylene, etc.) have also been explored in plant signaling. These processes also mediate protein post-translational modifications of cysteine residues. We have mainly highlighted all these biological functions along with proposing novel relevant issues that are required to be addressed further in the near future. Moreover, we have also proposed the possible mechanisms of H2S actions in mediating redox-dependent mechanisms in plant physiology.


Sign in / Sign up

Export Citation Format

Share Document