scholarly journals Analysis of Land Use Change and Its Impact on the Hydrology of Kakia and Esamburmbur Sub-Watersheds of Narok County, Kenya

Hydrology ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 86
Author(s):  
Nzitonda Marie Mireille ◽  
Hosea M. Mwangi ◽  
John K. Mwangi ◽  
John Mwangi Gathenya

Narok town is one of the places in Kenya which experience catastrophic floods. Many lives have been lost and valuable property destroyed in recent years. Change in land use/land cover upstream of the town area may have contributed significantly to the severity and frequency of flooding events. Runoff, which contributes to floods in Narok town, comes from Kakia and Esamburmbur sub-catchments of Enkare Narok watershed. The objective of this study was to assess the impact of land use/land cover change on the hydrology of Kakia and Esamburmbur sub-watersheds. To detect land use/land cover change, Landsat satellite images from 1985 to 2019 were used. Using supervised classification in Erdas Imagine 2014, land use of the study area was classified into four classes, i.e., forest, rangeland, agriculture and built-up areas. Five land use maps (1985, 1995, 2000, 2010, and 2019) were developed and used to perform land use change analysis. There was rampart conversion of forest to other land uses. Between 1985 and 2019, the forest and rangeland declined by 40.3% and 25.6% of the study area, respectively, while agriculture and built-up areas increased by 55.2% and 10.6% of the study area respectively. Analysis of soil hydrological properties indicate that the infiltration rate and soil hydraulic conductivity were greatest in forest than in other land use types. The basic infiltration rate in forest land was 89.1 cm/h while in rangeland and agricultural land, it was 7.9 cm/h and 15 cm/h respectively. At the top-soil layer, average soil hydraulic conductivity under forest was 46.3 cm/h, under rangeland, 2.6 cm/h and under agriculture, 4.9 cm/h. The low hydraulic conductivity in rangeland and agriculture was attributed to compaction by farm machinery (tractors) and livestock respectively. An interesting observation was made in rangelands where the top layer (0–20 cm) had a higher bulk density and a lower hydraulic conductivity as compared to the next deeper layer (20–40 cm). This was attributed to the combined impact of compaction and localised pressure by hooves of livestock which only have an impact on the top layer. The findings of this study show that land use has a major impact on soil hydrological properties and imply that the observed land use changes negatively affected the soil hydrological properties of the watershed. The decreased infiltration in the increasing areas of degraded land (mainly agriculture and rangeland) and increase in built-up area in Narok town are the possible causes of the increased flood risk in Narok town. It is recommended that flood risk management strategies in Narok town include watershed management to enhance water infiltration.

2013 ◽  
Vol 39 (4) ◽  
pp. 59-70 ◽  
Author(s):  
Fredrick Ao Otieno ◽  
Olumuyiwa I Ojo ◽  
George M. Ochieng

Abstract Land cover change (LCC) is important to assess the land use/land cover changes with respect to the development activities like irrigation. The region selected for the study is Vaal Harts Irrigation Scheme (VHS) occupying an area of approximately 36, 325 hectares of irrigated land. The study was carried out using Land sat data of 1991, 2001, 2005 covering the area to assess the changes in land use/land cover for which supervised classification technique has been applied. The Normalized Difference Vegetation Index (NDVI) index was also done to assess vegetative change conditions during the period of investigation. By using the remote sensing images and with the support of GIS the spatial pattern of land use change of Vaal Harts Irrigation Scheme for 15 years was extracted and interpreted for the changes of scheme. Results showed that the spatial difference of land use change was obvious. The analysis reveals that 37.86% of additional land area has been brought under fallow land and thus less irrigation area (18.21%). There is an urgent need for management program to control the loss of irrigation land and therefore reclaim the damaged land in order to make the scheme more viable.


2011 ◽  
Vol 13 (5) ◽  
pp. 695-700
Author(s):  
Zhihua TANG ◽  
Xianlong ZHU ◽  
Cheng LI

2021 ◽  
Vol 125 ◽  
pp. 107447 ◽  
Author(s):  
Rehana Rasool ◽  
Abida Fayaz ◽  
Mifta ul Shafiq ◽  
Harmeet Singh ◽  
Pervez Ahmed

2021 ◽  
Vol 108 ◽  
pp. 103224
Author(s):  
Tárcio Rocha Lopes ◽  
Cornélio Alberto Zolin ◽  
Rafael Mingoti ◽  
Laurimar Gonçalves Vendrusculo ◽  
Frederico Terra de Almeida ◽  
...  

2013 ◽  
Vol 8 (1) ◽  
pp. 084596 ◽  
Author(s):  
Zhongchang Sun ◽  
Xinwu Li ◽  
Wenxue Fu ◽  
Yingkui Li ◽  
Dongsheng Tang

Sign in / Sign up

Export Citation Format

Share Document