scholarly journals Pricing Basket Weather Derivatives on Rainfall and Temperature Processes

2019 ◽  
Vol 7 (3) ◽  
pp. 35
Author(s):  
Nelson Christopher Dzupire ◽  
Philip Ngare ◽  
Leo Odongo

This paper follows an incomplete market pricing approach to analyze the evaluation of weather derivatives and the viability of a weather derivatives market in terms of hedging. A utility indifference method is developed for the specification of indifference prices for the seller and buyer of a basket of weather derivatives written on rainfall and temperature. The agent’s risk preference is described by an exponential utility function and the prices are derived by dynamic programming principles and corresponding Hamilton Jacobi-Bellman equations from the stochastic optimal control problems. It is found the indifference measure is equal to the physical measure as there is no correlation between the capital market and weather. The fair price of the derivative should be greater than the seller’s indifference price and less than the buyer’s indifference price for market viability and no arbitrage opportunities.

2021 ◽  
Vol 14 (9) ◽  
pp. 399
Author(s):  
Pedro Pólvora ◽  
Daniel Ševčovič

Our goal is to analyze the system of Hamilton-Jacobi-Bellman equations arising in derivative securities pricing models. The European style of an option price is constructed as a difference of the certainty equivalents to the value functions solving the system of HJB equations. We introduce the transformation method for solving the penalized nonlinear partial differential equation. The transformed equation involves possibly non-constant the risk aversion function containing the negative ratio between the second and first derivatives of the utility function. Using comparison principles we derive useful bounds on the option price. We also propose a finite difference numerical discretization scheme with some computational examples.


Author(s):  
Sudeep Kundu ◽  
Karl Kunisch

AbstractPolicy iteration is a widely used technique to solve the Hamilton Jacobi Bellman (HJB) equation, which arises from nonlinear optimal feedback control theory. Its convergence analysis has attracted much attention in the unconstrained case. Here we analyze the case with control constraints both for the HJB equations which arise in deterministic and in stochastic control cases. The linear equations in each iteration step are solved by an implicit upwind scheme. Numerical examples are conducted to solve the HJB equation with control constraints and comparisons are shown with the unconstrained cases.


2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Hanlei Hu ◽  
Zheng Yin ◽  
Weipeng Yuan

In financial markets with volatility uncertainty, we assume that their risks are caused by uncertain volatilities and their assets are effectively allocated in the risk-free asset and a risky stock, whose price process is supposed to follow a geometric G-Brownian motion rather than a classical Brownian motion. The concept of arbitrage is used to deal with this complex situation and we consider stock price dynamics with no-arbitrage opportunities. For general European contingent claims, we deduce the interval of no-arbitrage price and the clear results are derived in the Markovian case.


Sign in / Sign up

Export Citation Format

Share Document