scholarly journals Comparative Proteomic Analysis of Coregulation of CIPK14 and WHIRLY1/3 Mediated Pale Yellowing of Leaves in Arabidopsis

2018 ◽  
Vol 19 (8) ◽  
pp. 2231 ◽  
Author(s):  
Zhe Guan ◽  
Wanzhen Wang ◽  
Xingle Yu ◽  
Wenfang Lin ◽  
Ying Miao

Pale yellowing of leaf variegation is observed in the mutant Arabidopsis lines Calcineurin B-Like-Interacting Protein Kinase14 (CIPK14) overexpression (oeCIPK14) and double-knockout WHIRLY1/WHIRLY3 (why1/3). Further, the relative distribution of WHIRLY1 (WHY1) protein between plastids and the nucleus is affected by the phosphorylation of WHY1 by CIPK14. To elucidate the coregulation of CIPK14 and WHIRLY1/WHIRLY3-mediated pale yellowing of leaves, a differential proteomic analysis was conducted between the oeCIPK14 variegated (oeCIPK14-var) line, why1/3 variegated (why1/3-var) line, and wild type (WT). More than 800 protein spots were resolved on each gel, and 67 differentially abundant proteins (DAPs) were identified by matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF-MS). Of these 67 proteins, 34 DAPs were in the oeCIPK14-var line and 33 DAPs were in the why1/3-var line compared to the WT. Five overlapping proteins were differentially expressed in both the oeCIPK14-var and why1/3-var lines: ATP-dependent Clp protease proteolytic subunit-related protein 3 (ClpR3), Ribulose bisphosphate carboxylase large chain (RBCL), Beta-amylase 3 (BAM3), Ribosome-recycling factor (RRF), and Ribulose bisphosphate carboxylase small chain (RBCS). Bioinformatics analysis showed that most of the DAPs are involved in photosynthesis, defense and antioxidation pathways, protein metabolism, amino acid metabolism, energy metabolism, malate biosynthesis, lipid metabolism, and transcription. Thus, in the why1/3-var and oeCIPK14-var lines, there was a decrease in the photosystem parameters, including the content of chlorophyll, the photochemical efficiency of photosystem (PS II) (Fv/Fm), and electron transport rates (ETRs), but there was an increase in non-photochemical quenching (NPQ). Both mutants showed high sensitivity to intense light. Based on the annotation of the DAPs from both why1/3-var and oeCIPK14-var lines, we conclude that the CIPK14 phosphorylation-mediated WHY1 deficiency in plastids is related to the impairment of protein metabolism, leading to chloroplast dysfunction.


Author(s):  
Zhe Guan ◽  
Wanzhen Wang ◽  
Xingle Yu ◽  
Wenfang Lin ◽  
Ying Miao

Leaf variegation pale yellowing is observed in the Calcineurin B-Like-Interacting Protein Kinase14 (CIPK14) overexpression line (oeCIPK14) and double knockout WHIRLY1/WHIRLY3 (why1/3) lines of Arabidopsis, the distribution of WHIRLY1 (WHY1) protein between plastids and the nucleus are affected by the phosphorylation of WHY1 by CIPK14. To elucidate the coregulation of CIPK14 and WHIRLY1/WHIRLY3 mediated leaf pale yellowing, a differential proteomic analysis is conducted between the oeCIPK14 variegated (oeCIPK14-var) line, why1/3 variegated (why1/3-var) line and wild type (WT). More than 800 protein spots are distinguished on each gel, 67 differential abundance proteins (DAPs) are identified by matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF-MS), of which, 34 DAPs are in the oeCIPK14-var, 33 DAPs are in the why1/3-var compared to WT. Five overlapping proteins differentially change both in the oeCIPK14-var and in the why1/3-var. They are ATP-dependent Clp protease proteolytic subunit-related protein 3 (ClpR3), Ribulose bisphosphate carboxylase large chain (RBL), Beta-amylase 3 (BAM3), Ribosome-recycling factor (RRF), Ribulose bisphosphate carboxylase small chain (RBS). Bioinformatics analysis show that most of DAPs are involved in photosynthesis, defense and antioxidation pathway, protein metabolism, amino acid metabolism, energy metabolism, malate biosynthesis, lipid metabolism and transcription. Thus, the photosystem parameters are measured that the content of chlorophyll, the photochemical efficiency of PSⅡ (Fv/Fm), and electron transport rates (ETR) decrease in the why1/3-var and oeCIPK14-var, but the non-photochemical quenching (NPQ) increases. Both mutants show high sensitivity to strong light. Based on the annotation of DAPs from both why1/3-var and oeCIPK14-var lines, we conclude that CIPK14 phosphorylation mediated WHY1 deficiency in plastids is related to impairment of protein metabolism leading to chloroplast dysfunction.





2001 ◽  
Vol 56 (11-12) ◽  
pp. 1067-1074 ◽  
Author(s):  
Benoît Sehoefs ◽  
Eva Darko ◽  
Steve Rodermel

Abstract RbcS antisense DNA mutants of tobacco have reduced amounts of ribulose bisphosphate carboxylase oxygenase (Rubisco). We found that carotenoid and chlorophyll contents decrease in parallel as Rubisco is decreased, however, pigment levels are not significantly altered until Rubisco levels are reduced sharply. The mutants have normal Chi a /Chi b ratios and normal plastid ultrastructures, suggesting that reductions in Rubisco do not dramatically alter the composition of the thylakoid membranes. Nevertheless, chlorophyll fluorescence measurements, in which developmentally homogenous leaves were sampled, showed that there is reduced photosynthetic capacity of PSII and an enhanced photosensitivity in the mutants, especially in transgenics with severe reductions in Rubisco content. Support for this conclusion comes from several observations; 1) light saturation occurs at a lower light inten­ sity in the mutants, resulting in an earlier closure of PS II (lower photochemical quenching); 2) the mutants have reduced photosynthetic efficiency (lower ΔF/Fm'); and 3) the mutants have a slower recovery of Fv/Fm. We found that acclimation to increasing light intensies in the mutants appears to involve an enhanced inactivation of PSII reaction centers as well as an increased activation of photoprotective mechanisms, notably an engagement of the xanthophyll cycle at lower than normal light intensities. We conclude that the photosensitivity of the antisense mutants is due, in part, to a limitation in Rubisco activation state.





Sign in / Sign up

Export Citation Format

Share Document