photochemical quenching
Recently Published Documents





2022 ◽  
Wiqar Ahmad ◽  
Jaya Nepal ◽  
Xiaoping Xin ◽  
Zhenli He

Abstract Conventional Zinc (Zn) fertilization (e.g., zinc sulfate) often leads to poor availability in soils. Zinc oxide nanoparticles (nano ZnO) can be a potential solution, but their effect on crop photosynthetic activity isn’t well documented. The effects of nano ZnO (50, 100, 150, 200 mg L-1) and application methods (seed-coating, soil-drench, and foliar-spray) in comparison with ZnSO4 recommended dose were evaluated for plant height, biomass, chlorophyll pigments and photosystem efficiency in a greenhouse pot experiment. 100 mg L-1 of nano ZnO significantly increased the chlorophyll (Chl.) a, b, a+b, carotenoids (x+c), a+b/x+c, SPAD, leaf Chl., total chlorophyll content plant-1, plant height and total biological yield (by 18-30%, 33-67%, 22-38%, 14-21%, 14-27%, 12-19%, 12-23% 58-99%, 6-11% and 16-20%, respectively) and reduced Chl. a/b (by 6-22%) over the other treatments (p<0.01) irrespective of application methods. Nano ZnO applied at 100 mg L-1 significantly increased photochemical quenching (qP) and efficiency of photosystem II (EPSII) compared to 150 and 200 mg L-1 regardless of application methods. The positive correlations between Chl. a and Chl. b (r2 0.90), Chl. a+b and x+c (r2=0.71), SPAD and Chl. a (r2=0.90), SPAD and Chl. b (r2=0.94) and SPAD and Chl. a+b (r2=0.93) indicates a uniform enhancement in chlorophyll pigments; SPAD value, qP, EPSII, and growth and yield parameters. This elucidates that the application of nano ZnO at 100 mg L-1 promotes corn biochemical health and photosynthesis, irrespective of the application method. These findings have a great propounding for improving plant growth through nano ZnO bio-fortification in acidic Spodosols.

2022 ◽  
Xin Liu ◽  
Wojciech J Nawrocki ◽  
Roberta Croce

Non-photochemical quenching (NPQ) is the process that protects photosynthetic organisms from photodamage by dissipating the energy absorbed in excess as heat. In the model green alga Chlamydomonas reinhardtii, NPQ was abolished in the knock-out mutants of the pigment-protein complexes LHCSR3 and LHCBM1. However, while LHCSR3 was shown to be a pH sensor and switching to a quenched conformation at low pH, the role of LHCBM1 in NPQ has not been elucidated yet. In this work, we combine biochemical and physiological measurements to study short-term high light acclimation of npq5, the mutant lacking LHCBM1. We show that while in low light in the absence of this complex, the antenna size of PSII is smaller than in its presence, this effect is marginal in high light, implying that a reduction of the antenna is not responsible for the low NPQ. We also show that the mutant expresses LHCSR3 at the WT level in high light, indicating that the absence of this complex is also not the reason. Finally, NPQ remains low in the mutant even when the pH is artificially lowered to values that can switch LHCSR3 to the quenched conformation. It is concluded that both LHCSR3 and LHCBM1 need to be present for the induction of NPQ and that LHCBM1 is the interacting partner of LHCSR3. This interaction can either enhance the quenching capacity of LHCSR3 or connect this complex with the PSII supercomplex.

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 285
Eszter Széles ◽  
Krisztina Nagy ◽  
Ágnes Ábrahám ◽  
Sándor Kovács ◽  
Anna Podmaniczki ◽  

Chlamydomonas reinhardtii is a model organism of increasing biotechnological importance, yet, the evaluation of its life cycle processes and photosynthesis on a single-cell level is largely unresolved. To facilitate the study of the relationship between morphology and photochemistry, we established microfluidics in combination with chlorophyll a fluorescence induction measurements. We developed two types of microfluidic platforms for single-cell investigations: (i) The traps of the “Tulip” device are suitable for capturing and immobilizing single cells, enabling the assessment of their photosynthesis for several hours without binding to a solid support surface. Using this “Tulip” platform, we performed high-quality non-photochemical quenching measurements and confirmed our earlier results on bulk cultures that non-photochemical quenching is higher in ascorbate-deficient mutants (Crvtc2-1) than in the wild-type. (ii) The traps of the “Pot” device were designed for capturing single cells and allowing the growth of the daughter cells within the traps. Using our most performant “Pot” device, we could demonstrate that the FV/FM parameter, an indicator of photosynthetic efficiency, varies considerably during the cell cycle. Our microfluidic devices, therefore, represent versatile platforms for the simultaneous morphological and photosynthetic investigations of C. reinhardtii on a single-cell level.

2022 ◽  
Vol 12 ◽  
Callum Gray ◽  
Tiejun Wei ◽  
Tomáš Polívka ◽  
Vangelis Daskalakis ◽  
Christopher D. P. Duffy

Higher plants defend themselves from bursts of intense light via the mechanism of Non-Photochemical Quenching (NPQ). It involves the Photosystem II (PSII) antenna protein (LHCII) adopting a conformation that favors excitation quenching. In recent years several structural models have suggested that quenching proceeds via energy transfer to the optically forbidden and short-lived S1 states of a carotenoid. It was proposed that this pathway was controlled by subtle changes in the relative orientation of a small number of pigments. However, quantum chemical calculations of S1 properties are not trivial and therefore its energy, oscillator strength and lifetime are treated as rather loose parameters. Moreover, the models were based either on a single LHCII crystal structure or Molecular Dynamics (MD) trajectories about a single minimum. Here we try and address these limitations by parameterizing the vibronic structure and relaxation dynamics of lutein in terms of observable quantities, namely its linear absorption (LA), transient absorption (TA) and two-photon excitation (TPE) spectra. We also analyze a number of minima taken from an exhaustive meta-dynamical search of the LHCII free energy surface. We show that trivial, Coulomb-mediated energy transfer to S1 is an unlikely quenching mechanism, with pigment movements insufficiently pronounced to switch the system between quenched and unquenched states. Modulation of S1 energy level as a quenching switch is similarly unlikely. Moreover, the quenching predicted by previous models is possibly an artifact of quantum chemical over-estimation of S1 oscillator strength and the real mechanism likely involves short-range interaction and/or non-trivial inter-molecular states.

PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12741
Ruier Zeng ◽  
Jing Cao ◽  
Xi Li ◽  
Xinyue Wang ◽  
Ying Wang ◽  

Fifteen peanut varieties at the pod filling stage were exposed to waterlogging stress for 7 days, the enzyme activities and fluorescence parameters were measured after 7 days of waterlogging and drainage. The waterlogging tolerance and recovery capability of varieties were identified. After waterlogging, waterlogging tolerance coefficient (WTC) of relative electrolyte linkage (REL), malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, and catalase (CAT) activity, non-photochemical quenching (NPQ) and photochemical quenching (qL) of leaves of most peanut varieties were increased, while the WTC of the soil and plant analysis development (SPAD) value, PS II actual quantum yield (ΦPS II), maximum photochemical efficiency (Fv/Fm) were decreased. After drainage, the WTC of REL, MDA content, SOD and CAT activity of leaves were decreased compared with that of after waterlogging, but these indicators of a few cultivars were increased. ΦPS II, Fv/Fm and qL can be used as important indexes to identify waterlogging recovery capability. There was a significant negative correlation between recovery capability and the proportion of reduction in yield, while no significant correlation was found between waterlogging tolerance and the proportion of reduction in yield. Therefore, it is recommended to select varieties with high recovery capability and less pod number reduction under waterlogging in peanut breeding and cultivation.

2022 ◽  
David Cuitun-Coronado ◽  
Hannah Rees ◽  
Anthony Hall ◽  
Luiza Lane de Barros Dantas ◽  
Antony N Dodd

Circadian rhythms are 24-hour biological cycles that align metabolism, physiology and development with daily environmental fluctuations. Photosynthetic processes are governed by the circadian clock in both flowering plants and cyanobacteria, but it is unclear how extensively this is conserved throughout the green lineage. We investigated the contribution of circadian regulation to photochemistry in Marchantia polymorpha, a liverwort that diverged from flowering plants early in the evolution of land plants. First, we identified in M. polymorpha the circadian regulation of several measures of photosynthetic biochemistry (delayed fluorescence, the rate of photosynthetic electron transport, and non-photochemical quenching of chlorophyll fluorescence). Second, we identified that light-dark cycles increase the robustness of the 24 h cycles of photosynthesis in M. polymorpha, which might be due to the masking of underlying circadian rhythms of photosynthesis by light-dark cycles. Finally, we used a pharmacological approach to identify that chloroplast translation might be necessary for clock control of light harvesting in M. polymorpha. We infer that the circadian regulation of photosynthesis might be well-conserved amongst terrestrial plants.

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 173
Douyan Wang ◽  
Yu Hayashi ◽  
Takahiro Enoki ◽  
Kenta Nakahara ◽  
Tetsuya Arita ◽  

Recent years have seen numerous studies into how applying pulsed high electric fields (PEF) to living organisms induces various stress reactions. Plants produce glucose through photosynthesis and use this as a source of energy for living, yet there are few studies on the photosynthetic response characteristics when PEF is applied to growing plants. In this study, the photosynthetic response when electric fields of 10 to 100 V/mm were applied to light and dark-acclimated leaves of lettuce was measured by combined gas exchange and chlorophyll fluorescence, and the exposure time was kept constant at 500 s. The responses to PEF with regard to the photosynthetic parameters of electron transfer rate (ETR), non-photochemical quenching (NPQ), photosynthetic rate (A), and transpiration rate (E) were recorded during the experiment. Results showed that PEF can cause both the activation and deactivation of photosynthetic activity in lettuce, that there is an optimum value for activation, and that the application of excessive energy leads to inactivation. This study also found that stomata on both active and deactivated lettuce had been open to a greater extent than lettuce to which PEF had not been applied. All the results of statistical significance in this study were p < 0.05 and p < 0.01.

2022 ◽  
Vol 23 (2) ◽  
pp. 687
Dandan Lu ◽  
Yi Zhang ◽  
Aihong Zhang ◽  
Congming Lu

Light is essential for photosynthesis but light levels that exceed an organism’s assimilation capacity can cause serious damage or even cell death. Plants and microalgae have developed photoprotective mechanisms collectively referred to as non-photochemical quenching to minimize such potential damage. One such mechanism is energy-dependent quenching (qE), which dissipates excess light energy as heat. Over the last 30 years, much has been learned about the molecular mechanism of qE in green algae and plants. However, the steps between light perception and qE represented a gap in our knowledge until the recent identification of light-signaling pathways that function in these processes in the green alga Chlamydomonas reinhardtii. In this review, we summarize the high light and UV-mediated signaling pathways for qE in Chlamydomonas. We discuss key questions remaining about the pathway from light perception to photoprotective gene expression in Chlamydomonas. We detail possible differences between green algae and plants in light-signaling mechanisms for qE and emphasize the importance of research on light-signaling mechanisms for qE in plants.

2022 ◽  
Vol 12 ◽  
Elisabeth Hommel ◽  
Monique Liebers ◽  
Sascha Offermann ◽  
Thomas Pfannschmidt

Photosynthesis needs to run efficiently under permanently changing illumination. To achieve this, highly dynamic acclimation processes optimize photosynthetic performance under a variety of rapidly changing light conditions. Such acclimation responses are acting by a complex interplay of reversible molecular changes in the photosynthetic antenna or photosystem assemblies which dissipate excess energy and balance uneven excitation between the two photosystems. This includes a number of non-photochemical quenching processes including state transitions and photosystem II remodeling. In the laboratory such processes are typically studied by selective illumination set-ups. Two set-ups known to be effective in a highly similar manner are (i) light quality shifts (inducing a preferential excitation of one photosystem over the other) or (ii) dark-light shifts (inducing a general off-on switch of the light harvesting machinery). Both set-ups result in similar effects on the plastoquinone redox state, but their equivalence in induction of photosynthetic acclimation responses remained still open. Here, we present a comparative study in which dark-light and light-quality shifts were applied to samples of the same growth batches of plants. Both illumination set-ups caused comparable effects on the phosphorylation of LHCII complexes and, hence, on the performance of state transitions, but generated different effects on the degree of state transitions and the formation of PSII super-complexes. The two light set-ups, thus, are not fully equivalent in their physiological effectiveness potentially leading to different conclusions in mechanistic models of photosynthetic acclimation. Studies on the regulation of photosynthetic light acclimation, therefore, requires to regard the respective illumination test set-up as a critical parameter that needs to be considered in the discussion of mechanistic and regulatory aspects in this subject.

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 108
Denis V. Yanykin ◽  
Dmitriy E. Burmistrov ◽  
Alexander V. Simakin ◽  
Julia A. Ermakova ◽  
Sergey V. Gudkov

The influence of light conversion induced by glasses coated with up-converting luminescent nanoparticles on Solanum lycopersicum cultivation was studied. Nanoparticles of Sr0.46Ba0.50Yb0.02Er0.02F2.04 solid solution were used as the up-converting luminophore. These nanoparticles were able to transform IR radiation into visible light (λem = 660 nm with minor peaks at 545 nm and 525 nm). By applying the “variable” chlorophyll fluorescence (ΔF), it was shown that the cultivation of tomatoes under the photoconversion glasses stimulated changes in the rate of plant adaptation to ultraviolet radiation. The restoration time of values of effective quantum yield of photosystem II photochemical reactions and photochemical quenching of chlorophyll fluorescence (reflecting disappearance of imbalance between photosynthetic electron transport and the utilization of NADPH) was reduced from three weeks to three days in the case of control and photoconversion films, respectively. As a result, plants grown under photoconversion glass had an increased leaf number (12.5%), total leaf area (33%), stem length (35%) and chlorophyll content in the leaves (two-fold). It is assumed that an increase in the proportion of red light in the growing spectrum has a positive effect on photosynthetic activity and plant growth.

Sign in / Sign up

Export Citation Format

Share Document