double knockout
Recently Published Documents


TOTAL DOCUMENTS

1104
(FIVE YEARS 345)

H-INDEX

82
(FIVE YEARS 8)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262577
Author(s):  
Jin Tanaka ◽  
Fuka Ishikawa ◽  
Tomoki Jinno ◽  
Motoki Miyakita ◽  
Haruka Miyamori ◽  
...  

cAMP responsive element binding protein (CREB)-regulated transcription coactivators (CRTCs) regulate gene transcription in response to an increase in intracellular cAMP or Ca2+ levels. To date, three isoforms of CRTC have been identified in mammals. All CRTCs are widely expressed in various regions of the brain. Numerous studies have shown the importance of CREB and CRTC in energy homeostasis. In the brain, the paraventricular nucleus of the hypothalamus (PVH) plays a critical role in energy metabolism, and CRTC1 and CRTC2 are highly expressed in PVH neuronal cells. The single-minded homolog 1 gene (Sim1) is densely expressed in PVH neurons and in some areas of the amygdala neurons. To determine the role of CRTCs in PVH on energy metabolism, we generated mice that lacked CRTC1 and CRTC2 in Sim1 cells using Sim-1 cre mice. We found that Sim1 cell-specific CRTC1 and CRTC2 double-knockout mice were sensitive to high-fat diet (HFD)-induced obesity. Sim1 cell-specific CRTC1 and CRTC2 double knockout mice showed hyperphagia specifically for the HFD, but not for the normal chow diet, increased fat mass, and no change in energy expenditure. Interestingly, these phenotypes were stronger in female mice than in male mice, and a weak phenotype was observed in the normal chow diet. The lack of CRTC1 and CRTC2 in Sim1 cells changed the mRNA levels of some neuropeptides that regulate energy metabolism in female mice fed an HFD. Taken together, our findings suggest that CRTCs in Sim1 cells regulate gene expression and suppress excessive fat intake, especially in female mice.


2022 ◽  
Author(s):  
Yushan Zhu ◽  
Qiangqiang Liu ◽  
Qian Luo ◽  
Jianyu Feng ◽  
Yanping Zhao ◽  
...  

DBC1 has been characterized as a key regulator of physiological and pathophysiological activities, such as DNA damage, senescence and tumorigenesis. However, the mechanism by which the functional stability of DBC1 is regulated has yet to be elucidated. Here, we report that the ubiquitination-mediated degradation of DBC1 is dynamically regulated by the E3 ubiquitin ligase SIAH2 and deubiquitinase OTUD5 under hypoxic stress. Mechanistically, hypoxia promoted the competitive binding of SIAH2 with OTUD5 to DBC1, resulting in the ubiquitination and subsequent degradation of DBC1 through the ubiquitin-proteasome pathway. Siah2 knockout inhibited tumor cell proliferation and migration, which could be rescued by double knockout of Siah2/DBC1. Human tissue microarray analysis further revealed that the SIAH2/DBC1 axis was responsible for tumor progression under hypoxic stress. These findings define a key role of the hypoxia-mediated SIAH2-DBC1 pathway in the progression of human breast cancer and provide novel insights into the metastatic mechanism of breast cancer.


2022 ◽  
Author(s):  
Maciek Adamowski ◽  
Ivana Matijević ◽  
Jiří Friml

Formation of endomembrane vesicles is crucial in all eukaryotic cells and relies on vesicle coats such as clathrin. Clathrin-coated vesicles form at the plasma membrane and the trans-Golgi Network. They contain adaptor proteins, which serve as binding bridges between clathrin, vesicle membranes, and cargoes. A large family of monomeric ANTH/ENTH/VHS adaptors is present in A. thaliana. Here, we characterize two homologous ANTH-type clathrin adaptors, CAP1 and ECA4, in clathrin-mediated endocytosis (CME). CAP1 and ECA4 are recruited to sites at the PM identified as clathrin-coated pits (CCPs), where they occasionally exhibit early bursts of high recruitment. Subcellular binding preferences of N- and C-terminal fluorescent protein fusions of CAP1 identified a functional adaptin-binding motif in the unstructured tails of CAP1 and ECA4. In turn, no function can be ascribed to a double serine phosphorylation site conserved in these proteins. Double knockout mutants do not exhibit deficiencies in general development or CME, but a contribution of CAP1 and ECA4 to these processes is revealed in crosses into sensitized endocytic mutant backgrounds. Overall, our study documents a contribution of CAP1 and ECA4 to CME in A. thaliana and opens questions about functional redundancy among non-homologous vesicle coat components.


2022 ◽  
Vol 23 (2) ◽  
pp. 707
Author(s):  
Ryo Matsuda ◽  
Shoji Suzuki ◽  
Norio Kurosawa

Homologous recombination (HR) is thought to be important for the repair of stalled replication forks in hyperthermophilic archaea. Previous biochemical studies identified two branch migration helicases (Hjm and PINA) and two Holliday junction (HJ) resolvases (Hjc and Hje) as HJ-processing proteins; however, due to the lack of genetic evidence, it is still unclear whether these proteins are actually involved in HR in vivo and how their functional relation is associated with the process. To address the above questions, we constructed hjc-, hje-, hjm-, and pina single-knockout strains and double-knockout strains of the thermophilic crenarchaeon Sulfolobus acidocaldarius and characterized the mutant phenotypes. Notably, we succeeded in isolating the hjm- and/or pina-deleted strains, suggesting that the functions of Hjm and PINA are not essential for cellular growth in this archaeon, as they were previously thought to be essential. Growth retardation in Δpina was observed at low temperatures (cold sensitivity). When deletion of the HJ resolvase genes was combined, Δpina Δhjc and Δpina Δhje exhibited severe cold sensitivity. Δhjm exhibited severe sensitivity to interstrand crosslinkers, suggesting that Hjm is involved in repairing stalled replication forks, as previously demonstrated in euryarchaea. Our findings suggest that the function of PINA and HJ resolvases is functionally related at lower temperatures to support robust cellular growth, and Hjm is important for the repair of stalled replication forks in vivo.


2022 ◽  
Author(s):  
Edward J Banigan ◽  
Wen Tang ◽  
Aafke A van den Berg ◽  
Roman R Stocsits ◽  
Gordana Wutz ◽  
...  

Cohesin organizes mammalian interphase chromosomes by reeling chromatin fibers into dynamic loops (Banigan and Mirny, 2020; Davidson et al., 2019; Kim et al., 2019; Yatskevich et al., 2019). "Loop extrusion" is obstructed when cohesin encounters a properly oriented CTCF protein (Busslinger et al., 2017; de Wit et al., 2015; Fudenberg et al., 2016; Nora et al., 2017; Sanborn et al., 2015; Wutz et al., 2017), and recent work indicates that other factors, such as the replicative helicase MCM (Dequeker et al., 2020), can also act as barriers to loop extrusion. It has been proposed that transcription relocalizes (Busslinger et al., 2017; Glynn et al., 2004; Lengronne et al., 2004) or interferes with cohesin (Heinz et al., 2018; Jeppsson et al., 2020; Valton et al., 2021; S. Zhang et al., 2021), and that active transcription start sites function as cohesin loading sites (Busslinger et al., 2017; Kagey et al., 2010; Zhu et al., 2021; Zuin et al., 2014), but how these effects, and transcription in general, shape chromatin is unknown. To determine whether transcription can modulate loop extrusion, we studied cells in which the primary extrusion barriers could be removed by CTCF depletion and cohesin's residence time and abundance on chromatin could be increased by Wapl knockout. We found evidence that transcription directly interacts with loop extrusion through a novel "moving barrier" mechanism, but not by loading cohesin at active promoters. Hi-C experiments showed intricate, cohesin-dependent genomic contact patterns near actively transcribed genes, and in CTCF-Wapl double knockout (DKO) cells (Busslinger et al., 2017), genomic contacts were enriched between sites of transcription-driven cohesin localization ("cohesin islands"). Similar patterns also emerged in polymer simulations in which transcribing RNA polymerases (RNAPs) acted as "moving barriers" by impeding, slowing, or pushing loop-extruding cohesins. The model predicts that cohesin does not load preferentially at promoters and instead accumulates at TSSs due to the barrier function of RNAPs. We tested this prediction by new ChIP-seq experiments, which revealed that the "cohesin loader" Nipbl (Ciosk et al., 2000) co-localizes with cohesin, but, unlike in previous reports (Busslinger et al., 2017; Kagey et al., 2010; Zhu et al., 2021; Zuin et al., 2014), Nipbl did not accumulate at active promoters. We propose that RNAP acts as a new type of barrier to loop extrusion that, unlike CTCF, is not stationary in its precise genomic position, but is itself dynamically translocating and relocalizes cohesin along DNA. In this way, loop extrusion could enable translocating RNAPs to maintain contacts with distal regulatory elements, allowing transcriptional activity to shape genomic functional organization.


Endocrinology ◽  
2021 ◽  
Author(s):  
Chie Umatani ◽  
Nagisa Yoshida ◽  
Eri Yamamoto ◽  
Yasuhisa Akazome ◽  
Yasutaka Mori ◽  
...  

Abstract Animals properly perform sexual behaviors by using multiple sensory cues. However, neural mechanisms integrating multiple sensory cues and regulating motivation for sexual behaviors remain unclear. Here, we focused on peptidergic neurons, terminal nerve gonadotropin-releasing hormone (TN-GnRH) neurons, which receive inputs from various sensory systems and co-express neuropeptide FF (NPFF) in addition to GnRH. Our behavioral analyses using knockout medaka of GnRH (gnrh3) and/or NPFF (npff) demonstrated that some sexual behavioral repertoires were ‘delayed’, not disrupted, in gnrh3 and npff single knockout males, while the double knockout appeared to alleviate the significant defects that were observed in single knockouts. We also found anatomical evidence to show that both neuropeptides modulate the sexual behavior-controlling brain areas. Furthermore, we demonstrated that NPFF activates neurons in the preoptic area via indirect pathway, which is considered to induce the increase in motivation for male sexual behaviors. Considering these results, we propose a novel mechanism by which co-existing peptides of the TN-GnRH neurons, NPFF and GnRH3, coordinately modulate certain neuronal circuit for the control of behavioral motivation. Our results may go a long way toward understanding the functional significance of peptidergic neuromodulation in response to sensory information from the external environments.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 18
Author(s):  
Vinicius Pinho dos Reis ◽  
Markus Keller ◽  
Katja Schmidt ◽  
Rainer Günter Ulrich ◽  
Martin Hermann Groschup

The Flavivirus genus includes a number of important viruses that are pathogenic to humans and animals and are responsible for outbreaks across the globe. Integrins, a family of heterodimeric transmembrane molecules expressed in all nucleated cells mediate critical functions of cell physiology and cell cycle. Integrins were previously postulated to be involved in flavivirus entry and to modulate flavivirus replication efficiency. In the present study, mouse embryonic fibroblasts (MEF), lacking the expression of αVβ3 integrin (MEF-αVβ3−/−), were infected with four different flaviviruses, namely yellow fever virus (YFV), West Nile virus (WNV), Usutu virus (USUV) and Langat virus (LGTV). The effects of the αVβ3 integrin absence in double-knockout MEF-αVβ3−/− on flavivirus binding, internalization and replication were compared to the respective wild-type cells. Binding to the cell surface for all four flaviviruses was not affected by the ablation of αVβ3 integrin, whereas internalization of USUV and WNV was slightly affected by the loss of αVβ3 integrin expression. Most interestingly, the deletion of αVβ3 integrin strongly impaired replication of all flaviviruses with a reduction of up to 99% on virus yields and a strong reduction on flavivirus anti-genome RNA synthesis. In conclusion, our results demonstrate that αVβ3 integrin expression in flavivirus-susceptible cell lines enhances the flavivirus replication.


2021 ◽  
Vol 22 (24) ◽  
pp. 13507
Author(s):  
Junru Miao ◽  
Wei Chen ◽  
Pengxiang Wang ◽  
Xin Zhang ◽  
Lei Wang ◽  
...  

MFN1 (Mitofusin 1) and MFN2 (Mitofusin 2) are GTPases essential for mitochondrial fusion. Published studies revealed crucial roles of both Mitofusins during embryonic development. Despite the unique mitochondrial organization in sperm flagella, the biological requirement in sperm development and functions remain undefined. Here, using sperm-specific Cre drivers, we show that either Mfn1 or Mfn2 knockout in haploid germ cells does not affect male fertility. The Mfn1 and Mfn2 double knockout mice were further analyzed. We found no differences in testis morphology and weight between Mfn-deficient mice and their wild-type littermate controls. Spermatogenesis was normal in Mfn double knockout mice, in which properly developed TRA98+ germ cells, SYCP3+ spermatocytes, and TNP1+ spermatids/spermatozoa were detected in seminiferous tubules, indicating that sperm formation was not disrupted upon MFN deficiency. Collectively, our findings reveal that both MFN1 and MFN2 are dispensable for sperm development and functions in mice.


Sign in / Sign up

Export Citation Format

Share Document