scholarly journals Correction: Cherkaoui, M., Lollier, V., Geairon, A., Bouder, A., Larré, C., Rogniaux, H., Jamet, E., Guillon, F. and Francin-Allami, M. Cell Wall Proteome of Wheat Grain Endosperm and Outer Layers at Two Key Stages of Early Development. Int. J. Mol. Sci. 2020, 21, 239

2020 ◽  
Vol 21 (5) ◽  
pp. 1740
Author(s):  
Mehdi Cherkaoui ◽  
Virginie Lollier ◽  
Audrey Geairon ◽  
Axelle Bouder ◽  
Colette Larré ◽  
...  

The authors wish to make the following corrections to this paper [...]

2019 ◽  
Vol 21 (1) ◽  
pp. 239 ◽  
Author(s):  
Cherkaoui Mehdi ◽  
Lollier Virginie ◽  
Geairon Audrey ◽  
Bouder Axelle ◽  
Larré Colette ◽  
...  

The cell wall is an important compartment in grain cells that fulfills both structural and functional roles. It has a dynamic structure that is constantly modified during development and in response to biotic and abiotic stresses. Non-structural cell wall proteins (CWPs) are key players in the remodeling of the cell wall during events that punctuate the plant life. Here, a subcellular and quantitative proteomic approach was carried out to identify CWPs possibly involved in changes in cell wall metabolism at two key stages of wheat grain development: the end of the cellularization step and the beginning of storage accumulation. Endosperm and outer layers of wheat grain were analyzed separately as they have different origins (maternal and seed) and functions in grains. Altogether, 734 proteins with predicted signal peptides were identified (CWPs). Functional annotation of CWPs pointed out a large number of proteins potentially involved in cell wall polysaccharide remodeling. In the grain outer layers, numerous proteins involved in cutin formation or lignin polymerization were found, while an unexpected abundance of proteins annotated as plant invertase/pectin methyl esterase inhibitors were identified in the endosperm. In addition, numerous CWPs were accumulating in the endosperm at the grain filling stage, thus revealing strong metabolic activities in the cell wall during endosperm cell differentiation, while protein accumulation was more intense at the earlier stage of development in outer layers. Altogether, our work gives important information on cell wall metabolism during early grain development in both parts of the grain, namely the endosperm and outer layers. The wheat cell wall proteome is the largest cell wall proteome of a monocot species found so far.


2021 ◽  
Author(s):  
Xiaoyue Kou ◽  
Hailong Zhang ◽  
Xiaonan Zhao ◽  
Mingjing Wang ◽  
Guochen Qin ◽  
...  

Abstract Background: SYP71, the plant-specific Qc-SNARE protein, is reported to regulate vesicle trafficking. SYP71 is localized on the ER, endosome, plasma membrane and cell plate, suggesting its multiple functions. Lotus SYP71 is essential for symbiotic nitrogen fixation in nodules. AtSYP71, GmSYP71 and OsSYP71 are implicated in plant resistance to pathogenesis. To date, SYP71 regulatory role on plant development remain unclear.Results: AtSYP71-knockout mutant atsyp71-4 was lethal at early development stage. Early development of AtSYP71-knockdown mutant atsyp71-2 was delayed, and stress response was also affected. Confocal images revealed that protein secretion was blocked in atsyp71-2. Transcriptomic analysis indicated that metabolism, response to environmental stimuli pathways and apoplast components were influenced in atsyp71-2. Moreover, the contents of lignin, cellulose and flavonoids as well as cell wall structures were also altered.Conclusion: Our findings suggested that AtSYP71 is essential for plant development. AtSYP71 probably regulates plant development, metabolism and environmental adaptation by affecting cell wall homeostasis via mediating secretion of materials and regulators required for cell wall biosynthesis and dynamics.


Planta ◽  
2014 ◽  
Vol 241 (3) ◽  
pp. 669-685 ◽  
Author(s):  
Richard Palmer ◽  
Valérie Cornuault ◽  
Susan E. Marcus ◽  
J. Paul Knox ◽  
Peter R. Shewry ◽  
...  

2019 ◽  
Vol 209 ◽  
pp. 103506 ◽  
Author(s):  
Lu Xiao ◽  
Taotao Li ◽  
Guoxiang Jiang ◽  
Yueming Jiang ◽  
Xuewu Duan

Biology ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 60 ◽  
Author(s):  
Sergeant ◽  
Printz ◽  
Guerriero ◽  
Renaut ◽  
Lutts ◽  
...  

In this study, the cell-wall-enriched subproteomes at three different heights of alfalfa stems were compared. Since these three heights correspond to different states in stem development, a view on the dynamics of the cell wall proteome during cell maturation is obtained. This study of cell wall protein-enriched fractions forms the basis for a description of the development process of the cell wall and the linking cell wall localized proteins with the evolution of cell wall composition and structure. The sequential extraction of cell wall proteins with CaCl2, EGTA, and LiCl-complemented buffers was combined with a gel-based proteome approach and multivariate analysis. Although the highest similarities were observed between the apical and intermediate stem regions, the proteome patterns are characteristic for each region. Proteins that bind carbohydrates and have proteolytic activity, as well as enzymes involved in glycan remobilization, accumulate in the basal stem region. Beta-amylase and ferritin likewise accumulate more in the basal stem segment. Therefore, remobilization of nutrients appears to be an important process in the oldest stem segment. The intermediate and apical regions are sites of cell wall polymer remodeling, as suggested by the high abundance of proteins involved in the remodeling of the cell wall, such as xyloglucan endoglucosylase, beta-galactosidase, or the BURP-domain containing polygalacturonase non-catalytic subunit. However, the most striking change between the different stem parts is the strong accumulation of a DUF642-conserved domain containing protein in the apical region of the stem, which suggests a particular role of this protein during the early development of stem tissues.


PROTEOMICS ◽  
2009 ◽  
Vol 9 (20) ◽  
pp. 4755-4769 ◽  
Author(s):  
Rafael Prados-Rosales ◽  
Jose L. Luque-Garcia ◽  
Raquel Martínez-López ◽  
Concha Gil ◽  
Antonio Di Pietro

PROTEOMICS ◽  
2006 ◽  
Vol 6 (1) ◽  
pp. 301-311 ◽  
Author(s):  
Emmanuelle M. Bayer ◽  
Andrew R. Bottrill ◽  
John Walshaw ◽  
Marielle Vigouroux ◽  
Mike J. Naldrett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document