scholarly journals Horizontal Transfer of LTR Retrotransposons Contributes to the Genome Diversity of Vitis

2021 ◽  
Vol 22 (19) ◽  
pp. 10446
Author(s):  
Minkyu Park ◽  
Ali Sarkhosh ◽  
Violeta Tsolova ◽  
Islam El-Sharkawy

While horizontally transferred transposable elements (TEs) have been reported in several groups of plants, their importance for genome evolution remains poorly understood. To understand how horizontally transferred TEs contribute to plant genome evolution, we investigated the composition and activity of horizontally transferred TEs in the genomes of four Vitis species. A total of 35 horizontal transfer (HT) events were identified between the four Vitis species and 21 other plant species belonging to 14 different families. We determined the donor and recipient species for 28 of these HTs, with the Vitis species being recipients of 15 of them. As a result of HTs, 8–10 LTR retrotransposon clusters were newly formed in the genomes of the four Vitis species. The activities of the horizontally acquired LTR retrotransposons differed among Vitis species, showing that the consequences of HTs vary during the diversification of the recipient lineage. Our study provides the first evidence that the HT of TEs contributes to the diversification of plant genomes by generating additional TE subfamilies and causing their differential proliferation in host genomes.

2020 ◽  
Vol 39 (8) ◽  
pp. 983-996
Author(s):  
R. Wambui Mbichi ◽  
Qing-Feng Wang ◽  
Tao Wan

Nature Plants ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Shu-Miaw Chaw ◽  
Yu-Ching Liu ◽  
Yu-Wei Wu ◽  
Han-Yu Wang ◽  
Chan-Yi Ivy Lin ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Anton Novikov ◽  
Georgiy Smyshlyaev ◽  
Olga Novikova

Chromodomain-containing LTR retrotransposons are one of the most successful groups of mobile elements in plant genomes. Previously, we demonstrated that two types of chromodomains (CHDs) are carried by plant LTR retrotransposons. Chromodomains from group I (CHD_I) were detected only in Tcn1-like LTR retrotransposons from nonseed plants such as mosses (including the model moss species Physcomitrella) and lycophytes (the Selaginella species). LTR retrotransposon chromodomains from group II (CHD_II) have been described from a wide range of higher plants. In the present study, we performed computer-based mining of plant LTR retrotransposon CHDs from diverse plants with an emphasis on spike-moss Selaginella. Our extended comparative and phylogenetic analysis demonstrated that two types of CHDs are present only in the Selaginella genome, which puts this species in a unique position among plants. It appears that a transition from CHD_I to CHD_II and further diversification occurred in the evolutionary history of plant LTR retrotransposons at approximately 400 MYA and most probably was associated with the evolution of chromatin organization.


2014 ◽  
Vol 18 ◽  
pp. 1-8 ◽  
Author(s):  
Concepcion M Diez ◽  
Kyria Roessler ◽  
Brandon S Gaut

2020 ◽  
Vol 160 (9) ◽  
pp. 554-564
Author(s):  
Agus B. Setiawan ◽  
Chee H. Teo ◽  
Shinji Kikuchi ◽  
Hidenori Sassa ◽  
Kenji Kato ◽  
...  

Mobile elements are major regulators of genome evolution through their effects on genome size and chromosome structure in higher organisms. Non-long terminal repeat (non-LTR) retrotransposons, one of the subclasses of transposons, are specifically inserted into repetitive DNA sequences. While studies on the insertion of non-LTR retrotransposons into ribosomal RNA genes and other repetitive DNA sequences have been reported in the animal kingdom, studies in the plant kingdom are limited. Here, using FISH, we confirmed that <i>Menolird18</i>, a member of LINE (long interspersed nuclear element) in non-LTR retrotransposons and found in <i>Cucumis melo</i>, was inserted into ITS and ETS (internal and external transcribed spacers) regions of 18S rDNA in melon and cucumber. Beside the 18S rDNA regions, <i>Menolird18</i> was also detected in all centromeric regions of melon, while it was located at pericentromeric and sub-telomeric regions in cucumber. The fact that FISH signals of <i>Menolird18</i> were found in centromeric and rDNA regions of mitotic chromosomes suggests that <i>Menolird18</i> is a rDNA and centromere-specific non-LTR retrotransposon in melon. Our findings are the first report on a non-LTR retrotransposon that is highly conserved in 2 different plant species, melon and cucumber. The clear distinction of chromosomal localization of <i>Menolird18</i> in melon and cucumber implies that it might have been involved in the evolutionary processes of the melon (<i>C. melo</i>) and cucumber (<i>C. sativus</i>) genomes.


PLoS ONE ◽  
2008 ◽  
Vol 3 (1) ◽  
pp. e1402 ◽  
Author(s):  
Miguel Bento ◽  
H. Sofia Pereira ◽  
Margarida Rocheta ◽  
Perry Gustafson ◽  
Wanda Viegas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document