scholarly journals Is the Mitochondrial Membrane Potential (∆Ψ) Correctly Assessed? Intracellular and Intramitochondrial Modifications of the ∆Ψ Probe, Rhodamine 123

2022 ◽  
Vol 23 (1) ◽  
pp. 482
Author(s):  
Ljubava D. Zorova ◽  
Evgeniya A. Demchenko ◽  
Galina A. Korshunova ◽  
Vadim N. Tashlitsky ◽  
Savva D. Zorov ◽  
...  

The mitochondrial membrane potential (∆Ψ) is the driving force providing the electrical component of the total transmembrane potential of hydrogen ions generated by proton pumps, which is utilized by the ATP synthase. The role of ∆Ψ is not limited to its role in bioenergetics since it takes part in other important intracellular processes, which leads to the mandatory requirement of the homeostasis of ∆Ψ. Conventionally, ∆Ψ in living cells is estimated by the fluorescence of probes such as rhodamine 123, tetramethylrodamine, etc. However, when assessing the fluorescence, the possibility of the intracellular/intramitochondrial modification of the rhodamine molecule is not taken into account. Such changes were revealed in this work, in which a comparison of normal (astrocytic) and tumor (glioma) cells was conducted. Fluorescent microscopy, flow cytometry, and mass spectrometry revealed significant modifications of rhodamine molecules developing over time, which were prevented by amiodarone apparently due to blocking the release of xenobiotics from the cell and their transformation with the participation of cytochrome P450. Obviously, an important role in these processes is played by the increased retention of rhodamines in tumor cells. Our data require careful evaluation of mitochondrial ∆Ψ potential based on the assessment of the fluorescence of the mitochondrial probe.

1997 ◽  
Vol 777 (1-2) ◽  
pp. 69-74 ◽  
Author(s):  
Antonio Camins ◽  
Francesc X Sureda ◽  
Cecilia Gabriel ◽  
Mercè Pallàs ◽  
Elena Escubedo ◽  
...  

Mitochondrion ◽  
2011 ◽  
Vol 11 (5) ◽  
pp. 700-706 ◽  
Author(s):  
Bernhard Kadenbach ◽  
Rabia Ramzan ◽  
Rainer Moosdorf ◽  
Sebastian Vogt

2017 ◽  
Author(s):  
Dahong Wang ◽  
Lanlan Wei ◽  
Shuaiying Zhang

The biological activities of quinoxalone, a novel small molecular substance isolated from the broth of the myxobacterium Stigmatella eracta WXNXJ-B, was investigated. This study was designed to determine the anti-proliferative, apoptotic property of quinoxalone, using B16 mouse melanoma cells as a model system. The results showed that quinoxalone has antitumor activity and can significantly inhibit the proliferation of B16 cells. The extent and the timing of apoptosis were strongly dependent on the dose. After treating with quinoxalone and staining with Hoechst 33342, B16 cells showed typical apoptotic morphological features such as chromatin condensation by fluorescent microscopy. DNA isolated from B16 cells cultured with quinoxalone showed a typical DNA ladder of apoptosis in agarose gel electrophoresis. Further investigation results showed that the apoptotic machinery of B16 induced by quinoxalone was associated with drop in mitochondrial membrane potential from 5.35% to 23.7%, up-regulation of Bax and down-regulation of Bcl-2 in a dose-dependent manner. And a significant increased activation of caspase-3. Our finding suggests that quinoxalone could suppress the growth of B16 cells and reduces cell survival via disturbing mitochondrial membrane potential and inducing apoptosis of tumor cells.


2004 ◽  
Vol 44 (supplement) ◽  
pp. S170
Author(s):  
H. Suzuki ◽  
K. Machida ◽  
K. Higashino ◽  
C. Fujita ◽  
H. Osada ◽  
...  

2009 ◽  
Vol 84 (5) ◽  
pp. 2421-2431 ◽  
Author(s):  
Chia-Yi Yu ◽  
Ruei-Lin Chiang ◽  
Tsung-Hsien Chang ◽  
Ching-Len Liao ◽  
Yi-Ling Lin

ABSTRACT Interferon (IFN) signaling is initiated by the recognition of viral components by host pattern recognition receptors. Dengue virus (DEN) triggers IFN-β induction through a molecular mechanism involving the cellular RIG-I/MAVS signaling pathway. Here we report that the MAVS protein level is reduced in DEN-infected cells and that caspase-1 and caspase-3 cleave MAVS at residue D429. In addition to its well-known function in IFN induction, MAVS is also a proapoptotic molecule that triggers disruption of the mitochondrial membrane potential and activation of caspases. Although different domains are required for the induction of cytotoxicity and IFN, caspase cleavage at residue 429 abolished both functions of MAVS. The apoptotic role of MAVS in viral infection and double-stranded RNA (dsRNA) stimulation was demonstrated in cells with reduced endogenous MAVS expression induced by RNA interference. Even though IFN-β promoter activation was largely suppressed, DEN production was not affected greatly in MAVS knockdown cells. Instead, DEN- and dsRNA-induced cell death and caspase activation were delayed and attenuated in the cells with reduced levels of MAVS. These results reveal a new role of MAVS in the regulation of cell death beyond its well-known function of IFN induction in antiviral innate immunity.


1996 ◽  
Vol 7 (11) ◽  
pp. 2348-2356
Author(s):  
S M Peters ◽  
M J Tijsen ◽  
R J Bindels ◽  
C H Van Os ◽  
J F Wetzels

It has been suggested that ischemic renal proximal tubular cell injury is mediated by an increase in cytosolic calcium concentrations ((Ca2+)i). However, measurements of (Ca2+)i in rat or rabbit proximal tubules exposed to hypoxia or anoxia have yielded ambiguous results. This study explored the possibility that the severity of oxygen deprivation and the energy state of the mitochondria are important determinants of (Ca2+)i. To this end, (Ca2+)i (measured with fura-2) and the mitochondrial membrane potential (measured with rhodamine 123) were studied simultaneously in individual rat proximal tubules in hypoxic and anoxic conditions. (Ca2+)i did not change during hypoxia, but increased rapidly during anoxia. Increases in (Ca2+)i were only observed in parallel with a decrease of rhodamine 123 fluorescence, which indicates a collapse of the mitochondrial membrane potential. The increase in (Ca2+)i during anoxia was prevented by incubating the tubules in a low Ca2+ medium, which did not interfere with the collapse of the mitochondrial membrane potential. Both hypoxic and anoxic incubation led to cell death, as assessed by the fluorescent dye propidium iodide. These results clearly demonstrate that the level of oxygen deprivation is critical in determining changes in (Ca2+)i. Because cell damage occurred in both hypoxic and anoxic conditions. It was concluded that an increase in (Ca2+)i is not a necessary prerequisite for the development of ischemic cell injury.


Sign in / Sign up

Export Citation Format

Share Document