scholarly journals Search Heuristics and Constructive Algorithms for Maximally Idempotent Integers

Information ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 305
Author(s):  
Barry Fagin

Previous work established the set of square-free integers n with at least one factorization n=p¯q¯ for which p¯ and q¯ are valid RSA keys, whether they are prime or composite. These integers are exactly those with the property λ(n)∣(p¯−1)(q¯−1), where λ is the Carmichael totient function. We refer to these integers as idempotent, because ∀a∈Zn,ak(p¯−1)(q¯−1)+1≡na for any positive integer k. This set was initially known to contain only the semiprimes, and later expanded to include some of the Carmichael numbers. Recent work by the author gave the explicit formulation for the set, showing that the set includes numbers that are neither semiprimes nor Carmichael numbers. Numbers in this last category had not been previously analyzed in the literature. While only the semiprimes have useful cryptographic properties, idempotent integers are deserving of study in their own right as they lie at the border of hard problems in number theory and computer science. Some idempotent integers, the maximally idempotent integers, have the property that all their factorizations are idempotent. We discuss their structure here, heuristics to assist in finding them, and algorithms from graph theory that can be used to construct examples of arbitrary size.

Author(s):  
Barry Fagin

We explore the class of positive integers n that admit idempotent factorizations n=pq such that lambda(n) divides (p-1)(q-1), where lambda(n) is the Carmichael lambda function. Idempotent factorizations with p and q prime have received the most attention due to their cryptographic advantages, but there are an infinite number of n with idempotent factorizations containing composite p and/or q. Idempotent factorizations are exactly those p and q that generate correctly functioning keys in the RSA 2-prime protocol with n as the modulus. While the resulting p and q have no cryptographic utility and therefore should never be employed in that capacity, idempotent factorizations warrant study in their own right as they live at the intersection of multiple hard problems in computer science and number theory. We present some analytical results here. We also demonstrate the existence of maximally idempotent integers, those n for which all bipartite factorizations are idempotent. We show how to construct them, and present preliminary results on their distribution.


Information ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 232 ◽  
Author(s):  
Barry Fagin

We explore the class of positive integers n that admit idempotent factorizations n = p ¯ q ¯ such that λ ( n ) ∣ ( p ¯ − 1 ) ( q ¯ − 1 ) , where λ is the Carmichael lambda function. Idempotent factorizations with p ¯ and q ¯ prime have received the most attention due to their cryptographic advantages, but there are an infinite number of n with idempotent factorizations containing composite p ¯ and/or q ¯ . Idempotent factorizations are exactly those p ¯ and q ¯ that generate correctly functioning keys in the Rivest–Shamir–Adleman (RSA) 2-prime protocol with n as the modulus. While the resulting p ¯ and q ¯ have no cryptographic utility and therefore should never be employed in that capacity, idempotent factorizations warrant study in their own right as they live at the intersection of multiple hard problems in computer science and number theory. We present some analytical results here. We also demonstrate the existence of maximally idempotent integers, those n for which all bipartite factorizations are idempotent. We show how to construct them, and present preliminary results on their distribution.


2015 ◽  
Vol 18 (1) ◽  
pp. 258-265 ◽  
Author(s):  
Jennifer S. Balakrishnan

The Coleman integral is a $p$-adic line integral that encapsulates various quantities of number theoretic interest. Building on the work of Harrison [J. Symbolic Comput. 47 (2012) no. 1, 89–101], we extend the Coleman integration algorithms in Balakrishnan et al. [Algorithmic number theory, Lecture Notes in Computer Science 6197 (Springer, 2010) 16–31] and Balakrishnan [ANTS-X: Proceedings of the Tenth Algorithmic Number Theory Symposium, Open Book Series 1 (Mathematical Sciences Publishers, 2013) 41–61] to even-degree models of hyperelliptic curves. We illustrate our methods with numerical examples computed in Sage.


2020 ◽  
Vol 14 (1) ◽  
pp. 393-396
Author(s):  
Antoine Joux ◽  
Jacek Pomykała

AbstractNumber-Theoretic Methods in Cryptology (NutMiC) is a bi-annual series of conferences that waslaunched in 2017. Its goal is to spur collaborations between cryptographers and number-theorists and to encourage progress on the number-theoretic hard problems used in cryptology. The publishing model for the series is also mixing the traditions of the cryptography and number theory communities. Articles were accepted for presentation at the conference by a scientific commitee and werereviewed again at a slower pace for inclusion in the journal post-proceedings.In 2019, the conference took place at the Institut de Mathématiques de Jussieu, Sorbonne University,Paris. The event was organized in collaboration with the international association for cryptologic research (IACR) and supported by the European Union’s H2020 Program under grant agreement number ERC-669891. This support allowed us to have low registration costs and offer easy access to all interested researchers.We were glad to have the participation of five internationally recognized invited speakers who greatly contributed to the success of the conference.Nutmic 2019 Co-Chairs,Antoine Joux and Jacek Pomykała


Author(s):  
Stefano Massei

AbstractVarious applications in numerical linear algebra and computer science are related to selecting the $$r\times r$$ r × r submatrix of maximum volume contained in a given matrix $$A\in \mathbb R^{n\times n}$$ A ∈ R n × n . We propose a new greedy algorithm of cost $$\mathcal O(n)$$ O ( n ) , for the case A symmetric positive semidefinite (SPSD) and we discuss its extension to related optimization problems such as the maximum ratio of volumes. In the second part of the paper we prove that any SPSD matrix admits a cross approximation built on a principal submatrix whose approximation error is bounded by $$(r+1)$$ ( r + 1 ) times the error of the best rank r approximation in the nuclear norm. In the spirit of recent work by Cortinovis and Kressner we derive some deterministic algorithms, which are capable to retrieve a quasi optimal cross approximation with cost $$\mathcal O(n^3)$$ O ( n 3 ) .


10.37236/811 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
J. Conde ◽  
J. Gimbert ◽  
J. Gonzàlez ◽  
J. M. Miret ◽  
R. Moreno

Almost Moore digraphs appear in the context of the degree/diameter problem as a class of extremal directed graphs, in the sense that their order is one less than the unattainable Moore bound $M(d,k)=1+d+\cdots +d^k$, where $d>1$ and $k>1$ denote the maximum out-degree and diameter, respectively. So far, the problem of their existence has only been solved when $d=2,3$ or $k=2$. In this paper, we prove that almost Moore digraphs of diameter $k=3$ do not exist for any degree $d$. The enumeration of almost Moore digraphs of degree $d$ and diameter $k=3$ turns out to be equivalent to the search of binary matrices $A$ fulfilling that $AJ=dJ$ and $I+A+A^2+A^3=J+P$, where $J$ denotes the all-one matrix and $P$ is a permutation matrix. We use spectral techniques in order to show that such equation has no $(0,1)$-matrix solutions. More precisely, we obtain the factorization in ${\Bbb Q}[x]$ of the characteristic polynomial of $A$, in terms of the cycle structure of $P$, we compute the trace of $A$ and we derive a contradiction on some algebraic multiplicities of the eigenvalues of $A$. In order to get the factorization of $\det(xI-A)$ we determine when the polynomials $F_n(x)=\Phi_n(1+x+x^2+x^3)$ are irreducible in ${\Bbb Q}[x]$, where $\Phi_n(x)$ denotes the $n$-th cyclotomic polynomial, since in such case they become 'big pieces' of $\det(xI-A)$. By using concepts and techniques from algebraic number theory, we prove that $F_n(x)$ is always irreducible in ${\Bbb Q}[x]$, unless $n=1,10$. So, by combining tools from matrix and number theory we have been able to solve a problem of graph theory.


2005 ◽  
Vol 01 (04) ◽  
pp. 563-581 ◽  
Author(s):  
A. KNOPFMACHER ◽  
M. E. MAYS

The general field of additive number theory considers questions concerning representations of a given positive integer n as a sum of other integers. In particular, partitions treat the sums as unordered combinatorial objects, and compositions treat the sums as ordered. Sometimes the sums are restricted, so that, for example, the summands are distinct, or relatively prime, or all congruent to ±1 modulo 5. In this paper we review work on analogous problems concerning representations of n as a product of positive integers. We survey techniques for enumerating product representations both in the unrestricted case and in the case when the factors are required to be distinct, and both when the product representations are considered as ordered objects and when they are unordered. We offer some new identities and observations for these and related counting functions and derive some new recursive algorithms to generate lists of factorizations with restrictions of various types.


1985 ◽  
Vol 27 ◽  
pp. 5-10
Author(s):  
S. A. Burr ◽  
P. Erdös

Let A be a sequence of positive integers. Define P(A) to be the set of all integers representable as a sum of distinct terms of A. Note that if A contains a repeated value, we are free to use it as many times as it occurs in A. We call A complete if every sufficiently large positive integer is in P(A), and entirely complete if every positive integer is in P(A). Completeness properties have received considerable, if somewhat sporadic, attention over the years. See Chapter 6 of [3] for a survey.


2009 ◽  
Vol 20 (05) ◽  
pp. 919-940 ◽  
Author(s):  
FRANCOIS NICOLAS ◽  
YURI PRITYKIN

A pure morphic sequence is a right-infinite, symbolic sequence obtained by iterating a letter-to-word substitution. For instance, the Fibonacci sequence and the Thue–Morse sequence, which play an important role in theoretical computer science, are pure morphic. Define a coding as a letter-to-letter substitution. The image of a pure morphic sequence under a coding is called a morphic sequence.A sequence x is called uniformly recurrent if for each finite subword u of x there exists an integer l such that u occurs in every l-length subword of x.The paper mainly focuses on the problem of deciding whether a given morphic sequence is uniformly recurrent. Although the status of the problem remains open, we show some evidence for its decidability: in particular, we prove that it can be solved in polynomial time on pure morphic sequences and on automatic sequences.In addition, we prove that the complexity of every uniformly recurrent, morphic sequence has at most linear growth: here, complexity is understood as the function that maps each positive integer n to the number of distinct n-length subwords occurring in the sequence.


Sign in / Sign up

Export Citation Format

Share Document