scholarly journals Local Indicators of Spatial Autocorrelation (LISA): Application to Blind Noise-Based Perceptual Quality Metric Index for Magnetic Resonance Images

2019 ◽  
Vol 5 (1) ◽  
pp. 20 ◽  
Author(s):  
Michael Osadebey ◽  
Marius Pedersen ◽  
Douglas Arnold ◽  
Katrina Wendel-Mitoraj

Noise-based quality evaluation of MRI images is highly desired in noise-dominant environments. Current noise-based MRI quality evaluation methods have drawbacks which limit their effective performance. Traditional full-reference methods such as SNR and most of the model-based techniques cannot provide perceptual quality metrics required for accurate diagnosis, treatment and monitoring of diseases. Although techniques based on the Moran coefficients are perceptual quality metrics, they are full-reference methods and will be ineffective in applications where the reference image is not available. Furthermore, the predicted quality scores are difficult to interpret because their quality indices are not standardized. In this paper, we propose a new no-reference perceptual quality evaluation method for grayscale images such as MRI images. Our approach is formulated to mimic how humans perceive an image. It transforms noise level into a standardized perceptual quality score. Global Moran statistics is combined with local indicators of spatial autocorrelation in the form of local Moran statistics. Quality score is predicted from perceptually weighted combination of clustered and random pixels. Performance evaluation, comparative performance evaluation and validation by human observers, shows that the proposed method will be a useful tool in the evaluation of retrospectively acquired MRI images and the evaluation of noise reduction algorithms.

2013 ◽  
Vol 38 (9) ◽  
pp. 2327-2356 ◽  
Author(s):  
Atidel Lahoulou ◽  
Ahmed Bouridane ◽  
Emmanuel Viennet ◽  
Mourad Haddadi

2016 ◽  
Vol 2016 (15) ◽  
pp. 1-10 ◽  
Author(s):  
Oleg I Ieremeiev ◽  
Vladimir V Lukin ◽  
Nikolay N Ponomarenko ◽  
Karen O Egiazarian ◽  
Jaakko Astola

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Wen Qian ◽  
Chao Zhou ◽  
Dengyin Zhang

In this paper, we present an extremely computation-efficient model called FAOD-Net for dehazing single image. FAOD-Net is based on a streamlined architecture that uses depthwise separable convolutions to build lightweight deep neural networks. Moreover, the pyramid pooling module is added in FAOD-Net to aggregate the context information of different regions of the image, thereby improving the ability of the network model to obtain the global information of the foggy image. To get the best FAOD-Net, we use the RESIDE training set to train our proposed model. In addition, we have carried out extensive experiments on the RESIDE test set. We use full-reference and no-reference image quality evaluation indicators to measure the effect of dehazing. Experimental results show that the proposed algorithm has satisfactory results in terms of defogging quality and speed.


Algorithms ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 313
Author(s):  
Domonkos Varga

The goal of full-reference image quality assessment (FR-IQA) is to predict the perceptual quality of an image as perceived by human observers using its pristine (distortion free) reference counterpart. In this study, we explore a novel, combined approach which predicts the perceptual quality of a distorted image by compiling a feature vector from convolutional activation maps. More specifically, a reference-distorted image pair is run through a pretrained convolutional neural network and the activation maps are compared with a traditional image similarity metric. Subsequently, the resulting feature vector is mapped onto perceptual quality scores with the help of a trained support vector regressor. A detailed parameter study is also presented in which the design choices of the proposed method is explained. Furthermore, we study the relationship between the amount of training images and the prediction performance. Specifically, it is demonstrated that the proposed method can be trained with a small amount of data to reach high prediction performance. Our best proposal—called ActMapFeat—is compared to the state-of-the-art on six publicly available benchmark IQA databases, such as KADID-10k, TID2013, TID2008, MDID, CSIQ, and VCL-FER. Specifically, our method is able to significantly outperform the state-of-the-art on these benchmark databases.


Sign in / Sign up

Export Citation Format

Share Document