scholarly journals An Iterative Algorithm for Solving Generalized Variational Inequalities and Fixed Points Problems

Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 61 ◽  
Author(s):  
Yonghong Yao ◽  
Mihai Postolache ◽  
Jen-Chih Yao

In this paper, a generalized variational inequality and fixed points problem is presented. An iterative algorithm is introduced for finding a solution of the generalized variational inequalities and fixed point of two quasi-pseudocontractive operators under a nonlinear transformation. Strong convergence of the suggested algorithm is demonstrated.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Li-Jun Zhu ◽  
Naseer Shahzad ◽  
Asim Asiri

In this paper, we are interested in variational inequalities and fixed-point problems in Hilbert spaces. We present an iterative algorithm for finding a solution of the studied variational inequalities and fixed-point problems. We show the strong convergence of the suggested algorithm.


2021 ◽  
Vol 37 (3) ◽  
pp. 477-487
Author(s):  
MONDAY OGUDU NNAKWE ◽  
◽  
" JERRY N." EZEORA ◽  

In this paper, using a sunny generalized non-expansive retraction which is different from the metric projection and generalized metric projection in Banach spaces, we present a retractive iterative algorithm of Krasnosel’skii-type, whose sequence approximates a common solution of a mono-variational inequality of a finite family of η-strongly-pseudo-monotone-type maps and fixed points of a countable family of generalized non-expansive-type maps. Furthermore, some new results relevant to the study are also presented. Finally, the theorem proved complements, improves and extends some important related recent results in the literature.


2009 ◽  
Vol 2009 ◽  
pp. 1-17 ◽  
Author(s):  
Bashir Ali

We prove a new strong convergence theorem for an element in the intersection of the set of common fixed points of a countable family of nonexpansive mappings, the set of solutions of some variational inequality problems, and the set of solutions of some equilibrium problems using a new iterative scheme. Our theorem generalizes and improves some recent results.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Poom Kumam ◽  
Thanyarat Jitpeera

We introduce the triple hierarchical problem over the solution set of the variational inequality problem and the fixed point set of a nonexpansive mapping. The strong convergence of the algorithm is proved under some mild conditions. Our results extend those of Yao et al., Iiduka, Ceng et al., and other authors.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Wei Xu ◽  
Yuanheng Wang

This paper deals with a new iterative algorithm for solving hierarchical fixed point problems of an infinite family of pseudocontractions in Hilbert spaces byyn=βnSxn+(1-βn)xn,xn+1=PC[αnf(xn)+(1-αn)∑i=1∞μi(n)Tiyn], and∀n≥0, whereTi:C↦His a nonselfki-strictly pseudocontraction. Under certain approximate conditions, the sequence{xn}converges strongly tox*∈⋂i=1∞F(Ti), which solves some variational inequality. The results here improve and extend some recent results.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1189 ◽  
Author(s):  
Yonghong Yao ◽  
Mihai Postolache ◽  
Jen-Chih Yao

In this paper, we are interested in the pseudomonotone variational inequalities and fixed point problem of pseudocontractive operators in Hilbert spaces. An iterative algorithm has been constructed for finding a common solution of the pseudomonotone variational inequalities and fixed point of pseudocontractive operators. Strong convergence analysis of the proposed procedure is given. Several related corollaries are included.


2014 ◽  
Vol 2014 ◽  
pp. 1-28
Author(s):  
Lu-Chuan Ceng ◽  
Cheng-Wen Liao ◽  
Chin-Tzong Pang ◽  
Ching-Feng Wen

We introduce and analyze one iterative algorithm by hybrid shrinking projection method for finding a solution of the minimization problem for a convex and continuously Fréchet differentiable functional, with constraints of several problems: finitely many generalized mixed equilibrium problems, finitely many variational inequalities, the general system of variational inequalities and the fixed point problem of an asymptotically strict pseudocontractive mapping in the intermediate sense in a real Hilbert space. We prove strong convergence theorem for the iterative algorithm under suitable conditions. On the other hand, we also propose another iterative algorithm by hybrid shrinking projection method for finding a fixed point of infinitely many nonexpansive mappings with the same constraints, and derive its strong convergence under mild assumptions.


Sign in / Sign up

Export Citation Format

Share Document