scholarly journals The Four-Parameter PSS Method for Solving the Sylvester Equation

Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 105 ◽  
Author(s):  
Hai-Long Shen ◽  
Yan-Ran Li ◽  
Xin-Hui Shao

In order to solve the Sylvester equations more efficiently, a new four parameters positive and skew-Hermitian splitting (FPPSS) iterative method is proposed in this paper based on the previous research of the positive and skew-Hermitian splitting (PSS) iterative method. We prove that when coefficient matrix A and B satisfy certain conditions, the FPPSS iterative method is convergent in the parameter’s value region. The numerical experiment results show that compared with previous iterative method, the FPPSS iterative method is more effective in terms of iteration number IT and runtime.

2004 ◽  
Vol 7 ◽  
pp. 247-254
Author(s):  
Takuro KATAYAMA ◽  
Mitsuhiro KASHIWAGI ◽  
Shin-ichi OHWAKI ◽  
Toshitaka YAMAO

2010 ◽  
Vol 13 (3) ◽  
pp. 408-417 ◽  
Author(s):  
Jiao-Fen Li ◽  
Xi-Yan Hu ◽  
Xue-Feng Duan

2013 ◽  
Vol 756-759 ◽  
pp. 2615-2619
Author(s):  
Jie Jing Liu

Linear system with H-matrix often appears in a wide variety of areas and is studied by many numerical researchers. In order to improve the convergence rates of iterative method solving the linear system whose coefficient matrix is an H-matrix. In this paper, a preconditioned AOR iterative method with a multi-parameters preconditioner with a general upper triangular matrix is proposed. In addition, the convergence of the coressponding iterative method are established. Lastly, we provide numerical experiments to illustrate the theoretical results.


2016 ◽  
Vol 13 (05) ◽  
pp. 1650024 ◽  
Author(s):  
Jin-Xiu Hu ◽  
Xiao-Wei Gao ◽  
Zhi-Chao Yuan ◽  
Jian Liu ◽  
Shi-Zhang Huang

In this paper, a new iterative method, for solving sparse nonsymmetrical systems of linear equations is proposed based on the Simultaneous Elimination and Back-Substitution Method (SEBSM), and the method is applied to solve systems resulted in engineering problems solved using Finite Element Method (FEM). First, SEBSM is introduced for solving general linear systems using the direct method. And, then an iterative method based on SEBSM is presented. In the method, the coefficient matrix [Formula: see text] is split into lower, diagonally banded and upper matrices. The iterative convergence can be controlled by selecting a suitable bandwidth of the diagonally banded matrix. And the size of the working array needing to be stored in iteration is as small as the bandwidth of the diagonally banded matrix. Finally, an accelerating strategy for this iterative method is proposed by introducing a relaxation factor, which can speed up the convergence effectively if an optimal relaxation factor is chosen. Two numerical examples are given to demonstrate the behavior of the proposed method.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Mu-Zheng Zhu ◽  
Guo-Feng Zhang ◽  
Ya-E Qi

Abstract By exploiting Toeplitz-like structure and non-Hermitian dense property of the discrete coefficient matrix, a new double-layer iterative method called SHSS-PCG method is employed to solve the linear systems originating from the implicit finite difference discretization of fractional diffusion equations (FDEs). The method is a combination of the single-step Hermitian and skew-Hermitian splitting (SHSS) method with the preconditioned conjugate gradient (PCG) method. Further, the new circulant preconditioners are proposed to improve the efficiency of SHSS-PCG method, and the computation cost is further reduced via using the fast Fourier transform (FFT). Theoretical analysis shows that the SHSS-PCG iterative method with circulant preconditioners is convergent. Numerical experiments are given to show that our SHSS-PCG method with circulant preconditioners preforms very well, and the proposed circulant preconditioners are very efficient in accelerating the convergence rate.


2014 ◽  
Vol 644-650 ◽  
pp. 1984-1987
Author(s):  
Shi Guang Zhang

The paper presents a preconditioned AOR iterative method if preconditioner is a general upper triangular matrix for solving a linear system whose coefficient matrix is an H-matrix. In addition, we discuss the convergence of corresponding methods. Finally, a numerical example is also given to illustrate our results.


Sign in / Sign up

Export Citation Format

Share Document