scholarly journals An Iterative Method Using Piecewise Valued Basic Vectors for Solving Linear Systems with Symmetric Coefficient Matrix

2004 ◽  
Vol 7 ◽  
pp. 247-254
Author(s):  
Takuro KATAYAMA ◽  
Mitsuhiro KASHIWAGI ◽  
Shin-ichi OHWAKI ◽  
Toshitaka YAMAO
2018 ◽  
Vol 15 (04) ◽  
pp. 1850023 ◽  
Author(s):  
H. Aminikhah ◽  
M. Yousefi

Range Restricted GMRES (RRGMRES) can be considered as regularizing iterative method and its iterates as regularized solutions. In this paper, we use two preconditioned versions of this method for solving ill-posed inverse problems. Our proposed preconditioner matrix is appropriate to use directly for linear systems of the form [Formula: see text] with square ill-conditioned coefficient matrix. We show numerically that the Preconditioned RRGMRES method has more stable solution compared to RRGMRES.


2012 ◽  
Vol 24 (4) ◽  
pp. 1047-1084 ◽  
Author(s):  
Xiao-Tong Yuan ◽  
Shuicheng Yan

We investigate Newton-type optimization methods for solving piecewise linear systems (PLSs) with nondegenerate coefficient matrix. Such systems arise, for example, from the numerical solution of linear complementarity problem, which is useful to model several learning and optimization problems. In this letter, we propose an effective damped Newton method, PLS-DN, to find the exact (up to machine precision) solution of nondegenerate PLSs. PLS-DN exhibits provable semiiterative property, that is, the algorithm converges globally to the exact solution in a finite number of iterations. The rate of convergence is shown to be at least linear before termination. We emphasize the applications of our method in modeling, from a novel perspective of PLSs, some statistical learning problems such as box-constrained least squares, elitist Lasso (Kowalski & Torreesani, 2008 ), and support vector machines (Cortes & Vapnik, 1995 ). Numerical results on synthetic and benchmark data sets are presented to demonstrate the effectiveness and efficiency of PLS-DN on these problems.


2018 ◽  
Vol 777 ◽  
pp. 421-425 ◽  
Author(s):  
Chhengrot Sion ◽  
Chung Hao Hsu

Many methods have been developed to predict the thermal conductivity of the material. Heat transport is complex and it contains many unknown variables, which makes the thermal conductivity hard to define. The iterative solution of Boltzmann transport equation (BTE) can make the numerical calculation and the nanoscale study of heat transfer possible. Here, we review how to apply the iterative method to solve BTE and many linear systems. This method can compute a sequence of progressively accurate iteration to approximate the solution of BTE.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Xingping Sheng ◽  
Youfeng Su ◽  
Guoliang Chen

We give a modification of minimal residual iteration (MR), which is 1V-DSMR to solve the linear systemAx=b. By analyzing, we find the modifiable iteration to be a projection technique; moreover, the modification of which gives a better (at least the same) reduction of the residual error than MR. In the end, a numerical example is given to demonstrate the reduction of the residual error between the 1V-DSMR and MR.


2017 ◽  
Vol 7 (4) ◽  
pp. 827-836
Author(s):  
Ze-Jia Xie ◽  
Xiao-Qing Jin ◽  
Zhi Zhao

AbstractSome convergence bounds of the minimal residual (MINRES) method are studied when the method is applied for solving Hermitian indefinite linear systems. The matrices of these linear systems are supposed to have some properties so that their spectra are all clustered around ±1. New convergence bounds depending on the spectrum of the coefficient matrix are presented. Some numerical experiments are shown to demonstrate our theoretical results.


2019 ◽  
Vol 19 (1) ◽  
pp. 137-145 ◽  
Author(s):  
Ekaterina A. Muravleva ◽  
Ivan V. Oseledets

AbstractIn this paper we propose an efficient algorithm to compute low-rank approximation to the solution of so-called “Laplace-like” linear systems. The idea is to transform the problem into the frequency domain, and then use cross approximation. In this case, we do not need to form explicit approximation to the inverse operator, and can approximate the solution directly, which leads to reduced complexity. We demonstrate that our method is fast and robust by using it as a solver inside Uzawa iterative method for solving the Stokes problem.


Sign in / Sign up

Export Citation Format

Share Document