scholarly journals A Kind of New Higher-Order Mond-Weir Type Duality for Set-Valued Optimization Problems

Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 372
Author(s):  
Liu He ◽  
Qi-Lin Wang ◽  
Ching-Feng Wen ◽  
Xiao-Yan Zhang ◽  
Xiao-Bing Li

In this paper, we introduce the notion of higher-order weak adjacent epiderivative for a set-valued map without lower-order approximating directions and obtain existence theorem and some properties of the epiderivative. Then by virtue of the epiderivative and Benson proper efficiency, we establish the higher-order Mond-Weir type dual problem for a set-valued optimization problem and obtain the corresponding weak duality, strong duality and converse duality theorems, respectively.

2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Najeeb Abdulaleem

AbstractIn this paper, a class of E-differentiable vector optimization problems with both inequality and equality constraints is considered. The so-called vector mixed E-dual problem is defined for the considered E-differentiable vector optimization problem with both inequality and equality constraints. Then, several mixed E-duality theorems are established under (generalized) V-E-invexity hypotheses.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Haijun Wang ◽  
Huihui Wang

AbstractIn this paper, we study the duality theorems of a nondifferentiable semi-infinite interval-valued optimization problem with vanishing constraints (IOPVC). By constructing the Wolfe and Mond–Weir type dual models, we give the weak duality, strong duality, converse duality, restricted converse duality, and strict converse duality theorems between IOPVC and its corresponding dual models under the assumptions of generalized convexity.


2022 ◽  
Vol 12 (1) ◽  
pp. 93
Author(s):  
Jutamas Kerdkaew ◽  
Rabian Wangkeeree ◽  
Rattanaporn Wangkeeree

<p style='text-indent:20px;'>In this paper, a robust optimization problem, which features a maximum function of continuously differentiable functions as its objective function, is investigated. Some new conditions for a robust KKT point, which is a robust feasible solution that satisfies the robust KKT condition, to be a global robust optimal solution of the uncertain optimization problem, which may have many local robust optimal solutions that are not global, are established. The obtained conditions make use of underestimators, which were first introduced by Jayakumar and Srisatkunarajah [<xref ref-type="bibr" rid="b1">1</xref>,<xref ref-type="bibr" rid="b2">2</xref>] of the Lagrangian associated with the problem at the robust KKT point. Furthermore, we also investigate the Wolfe type robust duality between the smooth uncertain optimization problem and its uncertain dual problem by proving the sufficient conditions for a weak duality and a strong duality between the deterministic robust counterpart of the primal model and the optimistic counterpart of its dual problem. The results on robust duality theorems are established in terms of underestimators. Additionally, to illustrate or support this study, some examples are presented.</p>


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Tingting Zou

Duality theorem is an attractive approach for solving fuzzy optimization problems. However, the duality gap is generally nonzero for nonconvex problems. So far, most of the studies focus on continuous variables in fuzzy optimization problems. And, in real problems and models, fuzzy optimization problems also involve discrete and mixed variables. To address the above problems, we improve the extended duality theory by adding fuzzy objective functions. In this paper, we first define continuous fuzzy nonlinear programming problems, discrete fuzzy nonlinear programming problems, and mixed fuzzy nonlinear programming problems and then provide the extended dual problems, respectively. Finally we prove the weak and strong extended duality theorems, and the results show no duality gap between the original problem and extended dual problem.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
S. K. Padhan ◽  
C. Nahak

We introduce a higher-order duality (Mangasarian type and Mond-Weir type) for the control problem. Under the higher-order generalized invexity assumptions on the functions that compose the primal problems, higher-order duality results (weak duality, strong duality, and converse duality) are derived for these pair of problems. Also, we establish few examples in support of our investigation.


Author(s):  
Rowland Jerry Okechukwu Ekeocha ◽  
Chukwunedum Uzor ◽  
Clement Anetor

<p><span>The duality principle provides that optimization problems may be viewed from either of two perspectives, the primal problem or the dual problem. The solution to the dual problem provides a lower bound to the solution of the primal (minimization) problem. However the optimal values of the primal and dual problems need not be equal. Their difference is called the duality gap. For convex optimization problems, the duality gap is zero under a constraint qualification condition.<span>  </span>In other words given any linear program, there is another related linear program called the dual. In this paper, an understanding of the dual linear program will be developed. This understanding will give important insights into the algorithm and solution of optimization problem in linear programming. <span> </span>Thus the main concepts of duality will be explored by the solution of simple optimization problem.</span></p>


2018 ◽  
Vol 13 (01) ◽  
pp. 2050020
Author(s):  
Vivek Singh ◽  
Anurag Jayswal ◽  
S. Al-Homidan ◽  
I. Ahmad

In this paper, we present a new class of higher order [Formula: see text]-[Formula: see text]-invex functions over cones. Further, we formulate two types of higher order dual models for a vector optimization problem over cones containing support functions in objectives as well as in constraints and establish several duality results, viz., weak and strong duality results.


Author(s):  
G.–Y. Chen ◽  
B. D. Craven

AbstractAn approximate dual is proposed for a multiobjective optimization problem. The approximate dual has a finite feasible set, and is constructed without using a perturbation. An approximate weak duality theorem and an approximate strong duality theorem are obtained, and also an approximate variational inequality condition for efficient multiobjective solutions.


Author(s):  
Tadeusz Antczak ◽  
Manuel Arana Jiménez

In this paper, we introduce the concepts of KT-G-invexity and WD$-G-invexity for the considered differentiable optimization problem with inequality constraints. Using KT-G-invexity notion, we prove new necessary and sufficient optimality conditions for a new class of such nonconvex differentiable optimization problems. Further, the so-called G-Wolfe dual problem is defined for the considered extremum problem with inequality constraints. Under WD-G-invexity assumption, the necessary and sufficient conditions for weak duality between the primal optimization problem and its G-Wolfe dual problem are also established.


Filomat ◽  
2019 ◽  
Vol 33 (18) ◽  
pp. 6091-6101
Author(s):  
Ying Gao ◽  
Zhihui Xu

This paper is devoted to the study of a new kind of approximate proper efficiency in terms of proximal normal cone and co-radiant set for multiobjective optimization problem. We derive some properties of the new approximate proper efficiency and discuss the relations with the existing approximate concepts, such as approximate efficiency and approximate Benson proper efficiency. At last, we study the linear scalarizations for the new approximate proper efficiency under the generalized convexity assumption and give some examples to illustrate the main results.


Sign in / Sign up

Export Citation Format

Share Document