scholarly journals Extended Duality in Fuzzy Optimization Problems

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Tingting Zou

Duality theorem is an attractive approach for solving fuzzy optimization problems. However, the duality gap is generally nonzero for nonconvex problems. So far, most of the studies focus on continuous variables in fuzzy optimization problems. And, in real problems and models, fuzzy optimization problems also involve discrete and mixed variables. To address the above problems, we improve the extended duality theory by adding fuzzy objective functions. In this paper, we first define continuous fuzzy nonlinear programming problems, discrete fuzzy nonlinear programming problems, and mixed fuzzy nonlinear programming problems and then provide the extended dual problems, respectively. Finally we prove the weak and strong extended duality theorems, and the results show no duality gap between the original problem and extended dual problem.

2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Najeeb Abdulaleem

AbstractIn this paper, a class of E-differentiable vector optimization problems with both inequality and equality constraints is considered. The so-called vector mixed E-dual problem is defined for the considered E-differentiable vector optimization problem with both inequality and equality constraints. Then, several mixed E-duality theorems are established under (generalized) V-E-invexity hypotheses.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 372
Author(s):  
Liu He ◽  
Qi-Lin Wang ◽  
Ching-Feng Wen ◽  
Xiao-Yan Zhang ◽  
Xiao-Bing Li

In this paper, we introduce the notion of higher-order weak adjacent epiderivative for a set-valued map without lower-order approximating directions and obtain existence theorem and some properties of the epiderivative. Then by virtue of the epiderivative and Benson proper efficiency, we establish the higher-order Mond-Weir type dual problem for a set-valued optimization problem and obtain the corresponding weak duality, strong duality and converse duality theorems, respectively.


2013 ◽  
Vol 61 (2) ◽  
pp. 135-140
Author(s):  
M Babul Hasan ◽  
Md Toha

The objective of this paper is to improve the subgradient optimization method which is used to solve non-differentiable optimization problems in the Lagrangian dual problem. One of the main drawbacks of the subgradient method is the tuning process to determine the sequence of step-lengths to update successive iterates. In this paper, we propose a modified subgradient optimization method with various step size rules to compute a tuning- free subgradient step-length that is geometrically motivated and algebraically deduced. It is well known that the dual function is a concave function over its domain (regardless of the structure of the cost and constraints of the primal problem), but not necessarily differentiable. We solve the dual problem whenever it is easier to solve than the primal problem with no duality gap. However, even if there is a duality gap the solution of the dual problem provides a lower bound to the primal optimum that can be useful in combinatorial optimization. Numerical examples are illustrated to demonstrate the method. DOI: http://dx.doi.org/10.3329/dujs.v61i2.17059 Dhaka Univ. J. Sci. 61(2): 135-140, 2013 (July)


Author(s):  
Rowland Jerry Okechukwu Ekeocha ◽  
Chukwunedum Uzor ◽  
Clement Anetor

<p><span>The duality principle provides that optimization problems may be viewed from either of two perspectives, the primal problem or the dual problem. The solution to the dual problem provides a lower bound to the solution of the primal (minimization) problem. However the optimal values of the primal and dual problems need not be equal. Their difference is called the duality gap. For convex optimization problems, the duality gap is zero under a constraint qualification condition.<span>  </span>In other words given any linear program, there is another related linear program called the dual. In this paper, an understanding of the dual linear program will be developed. This understanding will give important insights into the algorithm and solution of optimization problem in linear programming. <span> </span>Thus the main concepts of duality will be explored by the solution of simple optimization problem.</span></p>


2020 ◽  
Vol 18 (1) ◽  
pp. 1451-1477
Author(s):  
Ting Xie ◽  
Zengtai Gong ◽  
Dapeng Li

Abstract In this paper, we present the concepts of generalized derivative, directional generalized derivative, subdifferential and conjugate for n-dimensional fuzzy-number-valued functions and discuss the characterizations of generalized derivative and directional generalized derivative by, respectively, using the derivative and directional derivative of crisp functions that are determined by the fuzzy mapping. Furthermore, the relations among generalized derivative, directional generalized derivative, subdifferential and convexity for n-dimensional fuzzy-number-valued functions are investigated. Finally, under two kinds of partial orderings defined on the set of all n-dimensional fuzzy numbers, the duality theorems and saddle point optimality criteria in fuzzy optimization problems with constraints are discussed.


1997 ◽  
Vol 50 (11S) ◽  
pp. S97-S104 ◽  
Author(s):  
Hector A. Jensen ◽  
Abdon E. Sepulveda

This paper presents a methodology for the efficient solution of fuzzy optimization problems. Design variables, as well as system parameters are modeled as fuzzy numbers characterized by membership functions. An optimization approach based on approximation concepts is introduced. High quality approximations for system response functions are constructed using the concepts of intermediate response quantities and intermediate variables. These approximations are used to replace the solution of the original problem by a sequence of approximate problems. Optimization techniques for non-differentiable problems which arise in fuzzy optimization are used to solve the approximate optimization problems. Example problems are presented to illustrate the ideas set forth.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jianke Zhang

The concepts of preinvex and invex are extended to the interval-valued functions. Under the assumption of invexity, the Karush-Kuhn-Tucker optimality sufficient and necessary conditions for interval-valued nonlinear programming problems are derived. Based on the concepts of having no duality gap in weak and strong sense, the Wolfe duality theorems for the invex interval-valued nonlinear programming problems are proposed in this paper.


Author(s):  
Christodoulos A. Floudas

This chapter presents the fundamentals and algorithms for mixed-integer nonlinear optimization problems. Sections 6.1 and 6.2 outline the motivation, formulation, and algorithmic approaches. Section 6.3 discusses the Generalized Benders Decomposition and its variants. Sections 6.4, 6.5 and 6.6 presents the Outer Approximation and its variants with Equality Relaxation and Augmented Penalty. Section 6.7 discusses the Generalized Outer Approximation while section 6.8 compares the Generalized Benders Decomposition with the Outer Approximation. Finally, section 6.9 discusses the Generalized Cross Decomposition. A wide range of nonlinear optimization problems involve integer or discrete variables in addition to the continuous variables. These classes of optimization problems arise from a variety of applications and are denoted as Mixed-Integer Nonlinear Programming MINLP problems. The integer variables can be used to model, for instance, sequences of events, alternative candidates, existence or nonexistence of units (in their zero-one representation), while discrete variables can model, for instance, different equipment sizes. The continuous variables are used to model the input-output and interaction relationships among individual units/operations and different interconnected systems. The nonlinear nature of these mixed-integer optimization problems may arise from (i) nonlinear relations in the integer domain exclusively (e.g., products of binary variables in the quadratic assignment model), (ii) nonlinear relations in the continuous domain only (e.g., complex nonlinear input-output model in a distillation column or reactor unit), (iii) nonlinear relations in the joint integer-continuous domain (e.g., products of continuous and binary variables in the scheduling/ planning of batch processes, and retrofit of heat recovery systems). In this chapter, we will focus on nonlinearities due to relations (ii) and (iii). An excellent book that studies mixed-integer linear optimization, and nonlinear integer relationships in combinatorial optimization is the one by Nemhauser and Wolsey (1988). The coupling of the integer domain with the continuous domain along with their associated nonlinearities make the class of MINLP problems very challenging from the theoretical, algorithmic,and computational point of view. Apart from this challenge, however, there exists a broad spectrum of applications that can be modeled as mixed-integer nonlinear programming problems.


Sign in / Sign up

Export Citation Format

Share Document