multiobjective optimization problem
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 22)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Firoz Ahmad ◽  
Ahmad Yusuf Adhami ◽  
Boby John ◽  
Amit Reza

Many decision-making problems can solve successfully by traditional optimization methods with a well-defined configuration.  The formulation of such optimization problems depends on crisply objective functions and a specific system of constraints.  Nevertheless, in reality, in any decision-making process, it is often observed that due to some doubt or hesitation, it is pretty tricky for decision-maker(s) to specify the precise/crisp value of any parameters and compelled to take opinions from different experts which leads towards a set of conflicting values regarding satisfaction level of decision-maker(s). Therefore the real decision-making problem cannot always be deterministic. Various types of uncertainties in parameters make it fuzzy.  This paper presents a practical mathematical framework to reflect the reality involved in any decision-making process. The proposed method has taken advantage of the hesitant fuzzy aggregation operator and presents a particular way to emerge in a decision-making process. For this purpose,  we have discussed a couple of different hesitant fuzzy aggregation operators and developed linear and hyperbolic membership functions under hesitant fuzziness, which contains the concept of hesitant degrees for different objectives.  Finally, an example based on a multiobjective optimization problem is presented to illustrate the validity and applicability of our proposed models.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yang Liu ◽  
Jin Qi Zhu ◽  
Jinao Wang

Multiaccess edge computation (MEC) is a hotspot in 5G network. The problem of task offloading is one of the core problems in MEC. In this paper, a novel computation offloading model which partitions tasks into subtasksis proposed. This model takes communication and computing resources, energy consumption of intelligent mobile devices, and weight of tasks into account. We then transform the model into a multiobjective optimization problem based on Pareto that balances the task weight and time efficiency of the offloaded tasks. In addition, an algorithm based on hybrid immune and bat scheduling algorithm (HIBSA) is further designed to tackle the proposed multiobjective optimization problem. The experimental results show that HIBSA can meet the requirements of both the task execution deadline and the weight of the offloaded tasks.


2021 ◽  
Vol 11 (14) ◽  
pp. 6503
Author(s):  
Shuo Liu ◽  
Hao Wang ◽  
Yong Cai

Multiobjective optimization is a common problem in the field of industrial cutting. In actual production settings, it is necessary to rely on the experience of skilled workers to achieve multiobjective collaborative optimization. The process of industrial intelligence is to perceive the parameters of a cut object through sensors and use machines instead of manual decision making. However, the traditional sequential algorithm cannot satisfy multiobjective optimization problems. This paper studies the multiobjective optimization problem of irregular objects in the field of aquatic product processing and uses the information guidance strategy to develop a simulated annealing algorithm to solve the problem according to the characteristics of the object itself. By optimizing the mutation strategy, the ability of the simulated annealing algorithm to jump out of the local optimal solution is improved. The project team developed an experimental prototype to verify the algorithm. The experimental results show that compared with the traditional sequential algorithm method, the simulated degradation algorithm designed in this paper effectively improves the quality of the target solution and greatly enhances the economic value of the product by addressing the multiobjective optimization problem of squid cutting. At the end of the article, the cutting error is analyzed.


2021 ◽  
Vol 7 (2) ◽  
pp. 299-311
Author(s):  
Abdelmajid Ezzine ◽  
Abdellah Alla ◽  
Nadia Raissi

Abstract This paper aims to propose a new hybrid approach for solving multiobjective optimization problems. This approach is based on a combination of global and local search procedures. The cross-entropy method is used as a stochastic model-based method to solve the multiobjective optimization problem and reach a first elite set of global solutions. In the local search step, an ∈-constraint method converts the multiobjective optimization problem to a series of parameterized single-objective optimization problems. Then, sequential quadratic programming (SQP) is used to solve the derived single-objective optimization problems allowing to reinforce and improve the global results. Numerical examples are used to demonstrate the efficiency and effectiveness of the proposed approach.


2021 ◽  
Vol 11 (3) ◽  
pp. 1035
Author(s):  
Yanjie Sun ◽  
Mingguang Wu ◽  
Huien Li

Since bus prioritization policies can help mitigate urban traffic jams, the planning of bus lanes has drawn considerable attention. Existing methods suffer from a common limitation, which is that the limited spatial adaptability resulting from certain road condition information cannot be directly specified. Many bus GPS trajectories have been accumulated and can be contiguously gathered if needed. This paper proposes a trajectory-based bus lane planning method. First, we formulize the bus lane planning problem as a multiobjective optimization problem in which the road conditions, traffic flow, connectivity of bus lanes, and construction cost are organized as four constraints, and road utilization and bus punctuality are modeled as two objectives. Then, an evolutionary algorithm-based method is presented to solve the problem. We tested the model in the Nanshan District, Shenzhen City, China. Through a comparison with existing survey-based methods, the parameters associated with road conditions in this method are directly extracted from GPS trajectories, and this method is more effectively deployed than other methods. Since GPS trajectories can cover a wide area if needed, and because the proposed method can be effectively executed, this method can be adapted to large urban scales.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Nazih Abderrazzak Gadhi ◽  
Fatima Zahra Rahou

<p style='text-indent:20px;'>In this work, we are concerned with a fractional multiobjective optimization problem <inline-formula><tex-math id="M1">\begin{document}$ (P) $\end{document}</tex-math></inline-formula> involving set-valued maps. Based on necessary optimality conditions given by Gadhi et al. [<xref ref-type="bibr" rid="b14">14</xref>], using support functions, we derive sufficient optimality conditions for <inline-formula><tex-math id="M2">\begin{document}$ \left( P\right) , $\end{document}</tex-math></inline-formula> and we establish various duality results by associating the given problem with its Mond-Weir dual problem <inline-formula><tex-math id="M3">\begin{document}$ \left( D\right) . $\end{document}</tex-math></inline-formula> The main tools we exploit are convexificators and generalized convexities. Examples that illustrates our findings are also given.</p>


2020 ◽  
Vol 17 (5) ◽  
pp. 172988142095924
Author(s):  
Cai Chao ◽  
Gong Zhi Xing ◽  
Qin Xiao Wei ◽  
Zhou Qiu Shi ◽  
Sun Xi Xia

Unmanned aerial vehicle route planning is a complex multiconstrained multiobjective optimization problem. Due to the complexity of various constraints and the mutual coupling between them, the expression of constraint conditions is not universal and normative. The development, maintenance, and upgrading of an existing route planning system are very difficult. In this article, by establishing the polychromatic sets of aircraft, aircraft equipment, and flight actions, creating the fuzzy relational matrix between equipment and actions and between actions and actions, this article realizes the standardized and generalized expression of the constraint condition of the route planning problem. Then the analysis and inspection of the constraint conditions are realized by the polychromatic sets operation rules.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Alberto Pajares ◽  
Xavier Blasco ◽  
Juan M. Herrero ◽  
Raúl Simarro

This paper presents a design for the multivariable control of a cooling system in a PEM (proton exchange membrane) fuel cell stack. This system is complex and challenging enough: interactions between variables, highly nonlinear dynamic behavior, etc. This design is carried out using a multiobjective optimization methodology. There are few previous works that address this problem using multiobjective techniques. Also, this work has, as a novelty, the consideration of, in addition to the optimal controllers, the nearly optimal controllers nondominated in their neighborhood (potentially useful alternatives). In the multiobjective optimization problem approach, the designer must make decisions that include design objectives; parameters of the controllers to be estimated; and the conditions and characteristics of the simulation of the system. However, to simplify the optimization and decision stages, the designer does not include all the desired scenarios in the multiobjective problem definition. Nevertheless, these aspects can be analyzed in the decision stage only for the controllers obtained with a much less computational cost. At this stage, the potentially useful alternatives can play an important role. These controllers have significantly different parameters and therefore allow the designer to make a final decision with additional valuable information. Nearly optimal controllers can obtain an improvement in some aspects not included in the multiobjective optimization problem. For example, in this paper, various aspects are analyzed regarding potentially useful solutions, such as (1) the influence of certain parameters of the simulator; (2) the sample time of the controller; (3) the effect of stack degradation; and (4) the robustness. Therefore, this paper highlights the relevance of this in-depth analysis using the methodology proposed in the design of the multivariable control of the cooling system of a PEM fuel cell. This analysis can modify the final choice of the designer.


Sign in / Sign up

Export Citation Format

Share Document