scholarly journals Studies in Sums of Finite Products of the Second, Third, and Fourth Kind Chebyshev Polynomials

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 210
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Hyunseok Lee ◽  
Jongkyum Kwon

In this paper, we consider three sums of finite products of Chebyshev polynomials of two different kinds, namely sums of finite products of the second and third kind Chebyshev polynomials, those of the second and fourth kind Chebyshev polynomials, and those of the third and fourth kind Chebyshev polynomials. As a generalization of the classical linearization problem, we represent each of such sums of finite products as linear combinations of Hermite, generalized Laguerre, Legendre, Gegenbauer, and Jacobi polynomials. These are done by explicit computations and the coefficients involve terminating hypergeometric functions 2 F 1 , 1 F 1 , 2 F 2 , and 4 F 3 .

Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 617 ◽  
Author(s):  
Dmitry Dolgy ◽  
Dae Kim ◽  
Taekyun Kim ◽  
Jongkyum Kwon

This paper treats the connection problem of expressing sums of finite products of Chebyshev polynomials of the third and fourth kinds in terms of five classical orthogonal polynomials. In fact, by carrying out explicit computations each of them are expressed as linear combinations of Hermite, generalized Laguerre, Legendre, Gegenbauer, and Jacobi polynomials which involve some terminating hypergeometric functions F 0 2 , F 1 2 , and F 2 3 .


Author(s):  
Dmitry Victorovich Dolgy ◽  
Dae San Kim ◽  
Taekyun Kim ◽  
Jongkyum Kwon

This paper treats the connection problem of expressing sums of finite products of Chebyshev polynomials of the third and fourth kinds in terms of five classical orthogonal polynomials. In fact, by carrying out explicit computations each of them are expressed as linear combinations of Hermite, generalized Laguerre, Legendre, Gegenbauer, and Jacobi polynomials which involve some terminating hypergeometric functions ${}_2 F_0, {}_2 F_1$, and ${}_3 F_2$.


2021 ◽  
Vol 6 (11) ◽  
pp. 12528-12542
Author(s):  
Taekyun Kim ◽  
◽  
Dae San Kim ◽  
Dmitry V. Dolgy ◽  
Jongkyum Kwon ◽  
...  

<abstract><p>In this paper, we consider sums of finite products of the second and third type Chebyshev polynomials, those of the second and fourth type Chebyshev polynomials and those of the third and fourth type Chebyshev polynomials, and represent each of them as linear combinations of Chebyshev polynomials of all types. Here the coefficients involve some terminating hypergeometric functions $ {}_{2}F_{1} $. This problem can be viewed as a generalization of the classical linearization problems and is done by explicit computations.</p></abstract>


Mathematics ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 210 ◽  
Author(s):  
Taekyun Kim ◽  
Dae Kim ◽  
Jongkyum Kwon ◽  
Dmitry Dolgy

This paper is concerned with representing sums of the finite products of Chebyshev polynomials of the second kind and of Fibonacci polynomials in terms of several classical orthogonal polynomials. Indeed, by explicit computations, each of them is expressed as linear combinations of Hermite, generalized Laguerre, Legendre, Gegenbauer and Jacobi polynomials, which involve the hypergeometric functions 1 F 1 and 2 F 1 .


Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Jongkyum Kwon ◽  
Dmitry V. Dolgy

This paper is concerned with representing sums of finite products of Chebyshev polynomials of the second kind and of Fibonacci polynomials in terms of several classical orthogonal polynomials. Indeed, by explicit computations each of them is expressed as linear combinations of Hermite, generalized Laguerre, Legendre, Gegenbauer and Jacobi polynomials which involve the hypergeometric functions ${}_1 F_1$ and ${}_2 F_1$.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 742 ◽  
Author(s):  
Taekyun Kim ◽  
Dae Kim ◽  
Lee-Chae Jang ◽  
Dmitry Dolgy

In this paper, we consider sums of finite products of Chebyshev polynomials of the first, third, and fourth kinds, which are different from the previously-studied ones. We represent each of them as linear combinations of Chebyshev polynomials of all kinds whose coefficients involve some terminating hypergeometric functions 2 F 1 . The results may be viewed as a generalization of the linearization problem, which is concerned with determining the coefficients in the expansion of the product of two polynomials in terms of any given sequence of polynomials. These representations are obtained by explicit computations.


Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 224 ◽  
Author(s):  
Harendra Singh ◽  
Rajesh Pandey ◽  
Hari Srivastava

The aim of this paper is to solve a class of non-linear fractional variational problems (NLFVPs) using the Ritz method and to perform a comparative study on the choice of different polynomials in the method. The Ritz method has allowed many researchers to solve different forms of fractional variational problems in recent years. The NLFVP is solved by applying the Ritz method using different orthogonal polynomials. Further, the approximate solution is obtained by solving a system of nonlinear algebraic equations. Error and convergence analysis of the discussed method is also provided. Numerical simulations are performed on illustrative examples to test the accuracy and applicability of the method. For comparison purposes, different polynomials such as 1) Shifted Legendre polynomials, 2) Shifted Chebyshev polynomials of the first kind, 3) Shifted Chebyshev polynomials of the third kind, 4) Shifted Chebyshev polynomials of the fourth kind, and 5) Gegenbauer polynomials are considered to perform the numerical investigations in the test examples. Further, the obtained results are presented in the form of tables and figures. The numerical results are also compared with some known methods from the literature.


Author(s):  
T. Kim ◽  
D.S. Kim ◽  
D.V. Dolgy ◽  
C.S. Ryoo

Here we consider sums of finite products of Chebyshev polynomials of the third and fourth kinds. Then we represent each of those sums of finite products as linear combinations of the four kinds of Chebyshev polynomials which involve the hypergeometric function 3F2.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 317 ◽  
Author(s):  
Taekyun Kim ◽  
Kyung-Won Hwang ◽  
Dae Kim ◽  
Dmitry Dolgy

The purpose of this paper is to represent sums of finite products of Legendre and Laguerre polynomials in terms of several orthogonal polynomials. Indeed, by explicit computations we express each of them as linear combinations of Hermite, generalized Laguerre, Legendre, Gegenbauer and Jacobi polynomials, some of which involve terminating hypergeometric functions 1 F 1 and 2 F 1 .


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 74
Author(s):  
Waleed Mohamed Abd-Elhameed ◽  
Afnan Ali

The main purpose of the current article is to develop new specific and general linearization formulas of some classes of Jacobi polynomials. The basic idea behind the derivation of these formulas is based on reducing the linearization coefficients which are represented in terms of the Kampé de Fériet function for some particular choices of the involved parameters. In some cases, the required reduction is performed with the aid of some standard reduction formulas for certain hypergeometric functions of unit argument, while, in other cases, the reduction cannot be done via standard formulas, so we resort to certain symbolic algebraic computation, and specifically the algorithms of Zeilberger, Petkovsek, and van Hoeij. Some new linearization formulas of ultraspherical polynomials and third-and fourth-kinds Chebyshev polynomials are established.


Sign in / Sign up

Export Citation Format

Share Document