linearization problem
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 8)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 7 (2) ◽  
pp. 33
Author(s):  
Bousselham Ganbouri ◽  
Mohamed Wadia Mansouri

The paper deals with linearization problem of Poisson-Lie structures on the  \((1+1)\) Poincaré and \(2D\) Euclidean groups. We construct the explicit form of linearizing coordinates of all these Poisson-Lie structures. For this, we calculate all Poisson-Lie structures on these two groups mentioned above, through the correspondence with Lie Bialgebra structures on their Lie algebras which we first determine.


Author(s):  
Hao Hu ◽  
Renata Sotirov

AbstractWe provide several applications of the linearization problem of a binary quadratic problem. We propose a new lower bounding strategy, called the linearization-based scheme, that is based on a simple certificate for a quadratic function to be non-negative on the feasible set. Each linearization-based bound requires a set of linearizable matrices as an input. We prove that the Generalized Gilmore–Lawler bounding scheme for binary quadratic problems provides linearization-based bounds. Moreover, we show that the bound obtained from the first level reformulation linearization technique is also a type of linearization-based bound, which enables us to provide a comparison among mentioned bounds. However, the strongest linearization-based bound is the one that uses the full characterization of the set of linearizable matrices. We also present a polynomial-time algorithm for the linearization problem of the quadratic shortest path problem on directed acyclic graphs. Our algorithm gives a complete characterization of the set of linearizable matrices for the quadratic shortest path problem.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1573
Author(s):  
Waleed Mohamed Abd-Elhameed ◽  
Badah Mohamed Badah

This article deals with the general linearization problem of Jacobi polynomials. We provide two approaches for finding closed analytical forms of the linearization coefficients of these polynomials. The first approach is built on establishing a new formula in which the moments of the shifted Jacobi polynomials are expressed in terms of other shifted Jacobi polynomials. The derived moments formula involves a hypergeometric function of the type 4F3(1), which cannot be summed in general, but for special choices of the involved parameters, it can be summed. The reduced moments formulas lead to establishing new linearization formulas of certain parameters of Jacobi polynomials. Another approach for obtaining other linearization formulas of some Jacobi polynomials depends on making use of the connection formulas between two different Jacobi polynomials. In the two suggested approaches, we utilize some standard reduction formulas for certain hypergeometric functions of the unit argument such as Watson’s and Chu-Vandermonde identities. Furthermore, some symbolic algebraic computations such as the algorithms of Zeilberger, Petkovsek and van Hoeij may be utilized for the same purpose. As an application of some of the derived linearization formulas, we propose a numerical algorithm to solve the non-linear Riccati differential equation based on the application of the spectral tau method.


Actuators ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 14 ◽  
Author(s):  
David Meeker ◽  
Eric Maslen

Previously, a generalized bias current linearization was presented for the control of radial magnetic bearings. However, a numerically intensive procedure was required to obtain bias linearization currents. The present work develops an analytical solution to the generalized bias linearization problem in which solutions are indexed by a small number of parameters. The formulation also permits the analytical computation of bias linearization currents for faulted-coil cases. A limitation of the solution presented is that it only applies to stators with an even number of evenly spaces poles of equal area.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 210
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Hyunseok Lee ◽  
Jongkyum Kwon

In this paper, we consider three sums of finite products of Chebyshev polynomials of two different kinds, namely sums of finite products of the second and third kind Chebyshev polynomials, those of the second and fourth kind Chebyshev polynomials, and those of the third and fourth kind Chebyshev polynomials. As a generalization of the classical linearization problem, we represent each of such sums of finite products as linear combinations of Hermite, generalized Laguerre, Legendre, Gegenbauer, and Jacobi polynomials. These are done by explicit computations and the coefficients involve terminating hypergeometric functions 2 F 1 , 1 F 1 , 2 F 2 , and 4 F 3 .


2019 ◽  
Vol 16 (07) ◽  
pp. 1950107 ◽  
Author(s):  
Partha Guha ◽  
A. Ghose-Choudhury

We employ the method of nonlocal generalized Sundman transformations to formulate the linearization problem for equations of the generalized Liénard type and show that they may be mapped to equations of the dissipative Ermakov-Milne-Pinney type. We obtain the corresponding new first integrals of these derived equations, this method yields a natural generalization of the construction of Ermakov–Lewis invariant for a time-dependent oscillator to (coupled) Liénard and Liénard type equations. We also study the linearization problem for the coupled Liénard equation using nonlocal transformations and derive coupled dissipative Ermakov-Milne-Pinney equation. As an offshoot of this nonlocal transformation method when the standard Liénard equation, [Formula: see text], is mapped to that of the linear harmonic oscillator equation, we obtain a relation between the functions [Formula: see text] and [Formula: see text] which is exactly similar to the condition derived in the context of isochronicity of the Liénard equation.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 742 ◽  
Author(s):  
Taekyun Kim ◽  
Dae Kim ◽  
Lee-Chae Jang ◽  
Dmitry Dolgy

In this paper, we consider sums of finite products of Chebyshev polynomials of the first, third, and fourth kinds, which are different from the previously-studied ones. We represent each of them as linear combinations of Chebyshev polynomials of all kinds whose coefficients involve some terminating hypergeometric functions 2 F 1 . The results may be viewed as a generalization of the linearization problem, which is concerned with determining the coefficients in the expansion of the product of two polynomials in terms of any given sequence of polynomials. These representations are obtained by explicit computations.


Sign in / Sign up

Export Citation Format

Share Document