scholarly journals Sharp Bounds on (Generalized) Distance Energy of Graphs

Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 426 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Kinkar Ch. Das ◽  
Yilun Shang

Given a simple connected graph G, let D ( G ) be the distance matrix, D L ( G ) be the distance Laplacian matrix, D Q ( G ) be the distance signless Laplacian matrix, and T r ( G ) be the vertex transmission diagonal matrix of G. We introduce the generalized distance matrix D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where α ∈ [ 0 , 1 ] . Noting that D 0 ( G ) = D ( G ) , 2 D 1 2 ( G ) = D Q ( G ) , D 1 ( G ) = T r ( G ) and D α ( G ) − D β ( G ) = ( α − β ) D L ( G ) , we reveal that a generalized distance matrix ideally bridges the spectral theories of the three constituent matrices. In this paper, we obtain some sharp upper and lower bounds for the generalized distance energy of a graph G involving different graph invariants. As an application of our results, we will be able to improve some of the recently given bounds in the literature for distance energy and distance signless Laplacian energy of graphs. The extremal graphs of the corresponding bounds are also characterized.

Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Harishchandra Ramane ◽  
Xueliang Li

The distance signless Laplacian eigenvalues [Formula: see text] of a connected graph [Formula: see text] are the eigenvalues of the distance signless Laplacian matrix of [Formula: see text], defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix of vertex transmissions of [Formula: see text]. In this paper, we define and investigate the distance signless Laplacian Estrada index of a graph [Formula: see text] as [Formula: see text], and obtain some upper and lower bounds for [Formula: see text] in terms of other graph invariants. We also obtain some relations between [Formula: see text] and the auxiliary distance signless Laplacian energy of [Formula: see text].


2019 ◽  
Vol 12 (01) ◽  
pp. 2050006 ◽  
Author(s):  
A. Alhevaz ◽  
M. Baghipur ◽  
E. Hashemi ◽  
S. Paul

The distance signless Laplacian matrix of a connected graph [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix of vertex transmissions of [Formula: see text]. If [Formula: see text] are the distance signless Laplacian eigenvalues of a simple graph [Formula: see text] of order [Formula: see text] then we put forward the graph invariants [Formula: see text] and [Formula: see text] for the sum of [Formula: see text]-largest and the sum of [Formula: see text]-smallest distance signless Laplacian eigenvalues of a graph [Formula: see text], respectively. We obtain lower bounds for the invariants [Formula: see text] and [Formula: see text]. Then, we present some inequalities between the vertex transmissions, distance eigenvalues, distance Laplacian eigenvalues, and distance signless Laplacian eigenvalues of graphs. Finally, we give some new results and bounds for the distance signless Laplacian energy of graphs.


2018 ◽  
Vol 10 (03) ◽  
pp. 1850035 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Somnath Paul

The distance signless Laplacian spectral radius of a connected graph [Formula: see text] is the largest eigenvalue of the distance signless Laplacian matrix of [Formula: see text], defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix of vertex transmissions of [Formula: see text]. In this paper, we determine some bounds on the distance signless Laplacian spectral radius of [Formula: see text] based on some graph invariants, and characterize the extremal graphs. In addition, we define distance signless Laplacian energy, similar to that in [J. Yang, L. You and I. Gutman, Bounds on the distance Laplacian energy of graphs, Kragujevac J. Math. 37 (2013) 245–255] and give some bounds on the distance signless Laplacian energy of graphs.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 512
Author(s):  
Maryam Baghipur ◽  
Modjtaba Ghorbani ◽  
Hilal A. Ganie ◽  
Yilun Shang

The signless Laplacian reciprocal distance matrix for a simple connected graph G is defined as RQ(G)=diag(RH(G))+RD(G). Here, RD(G) is the Harary matrix (also called reciprocal distance matrix) while diag(RH(G)) represents the diagonal matrix of the total reciprocal distance vertices. In the present work, some upper and lower bounds for the second-largest eigenvalue of the signless Laplacian reciprocal distance matrix of graphs in terms of various graph parameters are investigated. Besides, all graphs attaining these new bounds are characterized. Additionally, it is inferred that among all connected graphs with n vertices, the complete graph Kn and the graph Kn−e obtained from Kn by deleting an edge e have the maximum second-largest signless Laplacian reciprocal distance eigenvalue.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1529 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal Ahmad Ganie ◽  
Yilun Shang

Let G be a simple undirected graph containing n vertices. Assume G is connected. Let D ( G ) be the distance matrix, D L ( G ) be the distance Laplacian, D Q ( G ) be the distance signless Laplacian, and T r ( G ) be the diagonal matrix of the vertex transmissions, respectively. Furthermore, we denote by D α ( G ) the generalized distance matrix, i.e., D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where α ∈ [ 0 , 1 ] . In this paper, we establish some new sharp bounds for the generalized distance spectral radius of G, making use of some graph parameters like the order n, the diameter, the minimum degree, the second minimum degree, the transmission degree, the second transmission degree and the parameter α , improving some bounds recently given in the literature. We also characterize the extremal graphs attaining these bounds. As an special cases of our results, we will be able to cover some of the bounds recently given in the literature for the case of distance matrix and distance signless Laplacian matrix. We also obtain new bounds for the k-th generalized distance eigenvalue.


2018 ◽  
Vol 10 (2) ◽  
pp. 218-240
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Ebrahim Hashemi ◽  
Yaser Alizadeh

Abstract Let G be a simple connected graph. The reciprocal transmission Tr′G(ν) of a vertex ν is defined as $${\rm{Tr}}_{\rm{G}}^\prime ({\rm{\nu }}) = \sum\limits_{{\rm{u}} \in {\rm{V}}(G)} {{1 \over {{{\rm{d}}_{\rm{G}}}(u,{\rm{\nu }})}}{\rm{u}} \ne {\rm{\nu }}.} $$ The reciprocal distance signless Laplacian (briefly RDSL) matrix of a connected graph G is defined as RQ(G)= diag(Tr′ (G)) + RD(G), where RD(G) is the Harary matrix (reciprocal distance matrix) of G and diag(Tr′ (G)) is the diagonal matrix of the vertex reciprocal transmissions in G. In this paper, we investigate the RDSL spectrum of some classes of graphs that are arisen from graph operations such as cartesian product, extended double cover product and InduBala product. We introduce minimum covering reciprocal distance signless Laplacian matrix (or briey MCRDSL matrix) of G as the square matrix of order n, RQC(G) := (qi;j), $${{\rm{q}}_{{\rm{ij}}}} = \left\{ {\matrix{ {1 + {\rm{Tr}}\prime ({{\rm{\nu }}_{\rm{i}}})} & {{\rm{if}}} & {{\rm{i = j}}} & {{\rm{and}}} & {{{\rm{\nu }}_{\rm{i}}} \in {\rm{C}}} \cr {{\rm{Tr}}\prime ({{\rm{\nu }}_{\rm{i}}})} & {{\rm{if}}} & {{\rm{i = j}}} & {{\rm{and}}} & {{{\rm{\nu }}_{\rm{i}}} \notin {\rm{C}}} \cr {{1 \over {{\rm{d(}}{{\rm{\nu }}_{\rm{i}}},{{\rm{\nu }}_{\rm{j}}})}}} & {{\rm{otherwise}}} & {} & {} & {} \cr } } \right.$$ where C is a minimum vertex cover set of G. MCRDSL energy of a graph G is defined as sum of eigenvalues of RQC. Extremal graphs with respect to MCRDSL energy of graph are characterized. We also obtain some bounds on MCRDSL energy of a graph and MCRDSL spectral radius of 𝒢, which is the largest eigenvalue of the matrix RQC (G) of graphs.


2021 ◽  
Vol 52 (1) ◽  
pp. 69-89
Author(s):  
Hilal Ahmad ◽  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Gui-Xian Tian

For a simple connected graph $G$, the convex linear combinations $D_{\alpha}(G)$ of \ $Tr(G)$ and $D(G)$ is defined as $D_{\alpha}(G)=\alpha Tr(G)+(1-\alpha)D(G)$, $0\leq \alpha\leq 1$. As $D_{0}(G)=D(G)$, $2D_{\frac{1}{2}}(G)=D^{Q}(G)$, $D_{1}(G)=Tr(G)$ and $D_{\alpha}(G)-D_{\beta}(G)=(\alpha-\beta)D^{L}(G)$, this matrix reduces to merging the distance spectral and distance signless Laplacian spectral theories. In this paper, we study the spectral properties of the generalized distance matrix $D_{\alpha}(G)$. We obtain some lower and upper bounds for the generalized distance spectral radius, involving different graph parameters and characterize the extremal graphs. Further, we obtain upper and lower bounds for the maximal and minimal entries of the $ p $-norm normalized Perron vector corresponding to spectral radius $ \partial(G) $ of the generalized distance matrix $D_{\alpha}(G)$ and characterize the extremal graphs.


Filomat ◽  
2020 ◽  
Vol 34 (3) ◽  
pp. 1025-1033
Author(s):  
Predrag Milosevic ◽  
Emina Milovanovic ◽  
Marjan Matejic ◽  
Igor Milovanovic

Let G be a simple connected graph of order n and size m, vertex degree sequence d1 ? d2 ?...? dn > 0, and let ?1 ? ? 2 ? ... ? ?n-1 > ?n = 0 be the eigenvalues of its Laplacian matrix. Laplacian energy LE, Laplacian-energy-like invariant LEL and Kirchhoff index Kf, are graph invariants defined in terms of Laplacian eigenvalues. These are, respectively, defined as LE(G) = ?n,i=1 |?i-2m/n|, LEL(G) = ?n-1 i=1 ??i and Kf (G) = n ?n-1,i=1 1/?i. A vertex-degree-based topological index referred to as degree deviation is defined as S(G) = ?n,i=1 |di- 2m/n|. Relations between Kf and LE, Kf and LEL, as well as Kf and S are obtained.


2021 ◽  
Vol 37 ◽  
pp. 709-717
Author(s):  
Mustapha Aouchiche ◽  
Bilal A. Rather ◽  
Issmail El Hallaoui

For a simple connected graph $G$, let $D(G)$, $Tr(G)$, $D^{L}(G)=Tr(G)-D(G)$, and $D^{Q}(G)=Tr(G)+D(G)$ be the distance matrix, the diagonal matrix of the vertex transmissions, the distance Laplacian matrix, and the distance signless Laplacian matrix of $G$, respectively. Atik and Panigrahi [2] suggested the study of the problem: Whether all eigenvalues, except the spectral radius, of $ D(G) $ and $ D^{Q}(G) $ lie in the smallest Ger\v{s}gorin disk? In this paper, we provide a negative answer by constructing an infinite family of counterexamples.


Sign in / Sign up

Export Citation Format

Share Document