scholarly journals Generalized Mehler Semigroup on White Noise Functionals and White Noise Evolution Equations

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 1025
Author(s):  
Un Cig Ji ◽  
Mi Ra Lee ◽  
Peng Cheng Ma

In this paper, we study a representation of generalized Mehler semigroup in terms of Fourier–Gauss transforms on white noise functionals and then we have an explicit form of the infinitesimal generator of the generalized Mehler semigroup in terms of the conservation operator and the generalized Gross Laplacian. Then we investigate a characterization of the unitarity of the generalized Mehler semigroup. As an application, we study an evolution equation for white noise distributions with n-th time-derivative of white noise as an additive singular noise.

1992 ◽  
Vol 128 ◽  
pp. 65-93 ◽  
Author(s):  
Takeyuki Hida ◽  
Nobuaki Obata ◽  
Kimiaki Saitô

The theory of generalized white noise functionals (white noise calculus) initiated in [2] has been considerably developed in recent years, in particular, toward applications to quantum physics, see e.g. [5], [7] and references cited therein. On the other hand, since H. Yoshizawa [4], [23] discussed an infinite dimensional rotation group to broaden the scope of an investigation of Brownian motion, there have been some attempts to introduce an idea of group theory into the white noise calculus. For example, conformal invariance of Brownian motion with multidimensional parameter space [6], variational calculus of white noise functionals [14], characterization of the Levy Laplacian [17] and so on.


Author(s):  
Luigi Accardi ◽  
Un Cig Ji ◽  
Kimiaki Saitô

We revisit the analytic characterization theorem for S-transform of infinite dimensional distributions. Then we prove that the nuclearity of the space of test white noise functionals is a necessary condition for the characterization of the S-transform in terms of analytic and growth conditions.


2021 ◽  
Vol 19 (1) ◽  
pp. 111-120
Author(s):  
Qinghua Zhang ◽  
Zhizhong Tan

Abstract This paper deals with the abstract evolution equations in L s {L}^{s} -spaces with critical temporal weights. First, embedding and interpolation properties of the critical L s {L}^{s} -spaces with different exponents s s are investigated, then solvability of the linear evolution equation, attached to which the inhomogeneous term f f and its average Φ f \Phi f both lie in an L 1 / s s {L}_{1\hspace{-0.08em}\text{/}\hspace{-0.08em}s}^{s} -space, is established. Based on these results, Cauchy problem of the semi-linear evolution equation is treated, where the nonlinear operator F ( t , u ) F\left(t,u) has a growth number ρ ≥ s + 1 \rho \ge s+1 , and its asymptotic behavior acts like α ( t ) / t \alpha \left(t)\hspace{-0.1em}\text{/}\hspace{-0.1em}t as t → 0 t\to 0 for some bounded function α ( t ) \alpha \left(t) like ( − log t ) − p {\left(-\log t)}^{-p} with 2 ≤ p < ∞ 2\le p\lt \infty .


Sign in / Sign up

Export Citation Format

Share Document