scholarly journals Probabilistic characterization of nonlinear systems under α-stable white noise via complex fractional moments

2015 ◽  
Vol 420 ◽  
pp. 265-276 ◽  
Author(s):  
G. Alotta ◽  
M. Di Paola
1988 ◽  
Vol 55 (3) ◽  
pp. 702-705 ◽  
Author(s):  
Y. K. Lin ◽  
Guoqiang Cai

A systematic procedure is developed to obtain the stationary probability density for the response of a nonlinear system under parametric and external excitations of Gaussian white noises. The procedure is devised by separating the circulatory portion of the probability flow from the noncirculatory flow, thus obtaining two sets of equations that must be satisfied by the probability potential. It is shown that these equations are identical to two of the conditions established previously under the assumption of detailed balance; therefore, one remaining condition for detailed balance is superfluous. Three examples are given for illustration, one of which is capable of exhibiting limit cycle and bifurcation behaviors, while another is selected to show that two different systems under two differents sets of excitations may result in the same probability distribution for their responses.


2021 ◽  
pp. 106138
Author(s):  
Chao Zhao ◽  
Wenping Gong ◽  
Tianzheng Li ◽  
C. Hsein Juang ◽  
Huiming Tang ◽  
...  

1992 ◽  
Vol 128 ◽  
pp. 65-93 ◽  
Author(s):  
Takeyuki Hida ◽  
Nobuaki Obata ◽  
Kimiaki Saitô

The theory of generalized white noise functionals (white noise calculus) initiated in [2] has been considerably developed in recent years, in particular, toward applications to quantum physics, see e.g. [5], [7] and references cited therein. On the other hand, since H. Yoshizawa [4], [23] discussed an infinite dimensional rotation group to broaden the scope of an investigation of Brownian motion, there have been some attempts to introduce an idea of group theory into the white noise calculus. For example, conformal invariance of Brownian motion with multidimensional parameter space [6], variational calculus of white noise functionals [14], characterization of the Levy Laplacian [17] and so on.


Sign in / Sign up

Export Citation Format

Share Document