scholarly journals Characteristic Polynomials and Eigenvalues for Certain Classes of Pentadiagonal Matrices

Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1056
Author(s):  
María Alejandra Alvarez ◽  
André Ebling Brondani ◽  
Francisca Andrea Macedo França ◽  
Luis A. Medina C.

There exist pentadiagonal matrices which are diagonally similar to symmetric matrices. In this work we describe explicitly the diagonal matrix that gives this transformation for certain pentadiagonal matrices. We also consider particular classes of pentadiagonal matrices and obtain recursive formulas for the characteristic polynomial and explicit formulas for their eigenvalues.

2021 ◽  
Vol 9 (1) ◽  
pp. 1-18
Author(s):  
Carolyn Reinhart

Abstract The distance matrix 𝒟(G) of a connected graph G is the matrix containing the pairwise distances between vertices. The transmission of a vertex vi in G is the sum of the distances from vi to all other vertices and T(G) is the diagonal matrix of transmissions of the vertices of the graph. The normalized distance Laplacian, 𝒟𝒧(G) = I−T(G)−1/2 𝒟(G)T(G)−1/2, is introduced. This is analogous to the normalized Laplacian matrix, 𝒧(G) = I − D(G)−1/2 A(G)D(G)−1/2, where D(G) is the diagonal matrix of degrees of the vertices of the graph and A(G) is the adjacency matrix. Bounds on the spectral radius of 𝒟 𝒧 and connections with the normalized Laplacian matrix are presented. Twin vertices are used to determine eigenvalues of the normalized distance Laplacian. The distance generalized characteristic polynomial is defined and its properties established. Finally, 𝒟𝒧-cospectrality and lack thereof are determined for all graphs on 10 and fewer vertices, providing evidence that the normalized distance Laplacian has fewer cospectral pairs than other matrices.


1974 ◽  
Vol 2 (2) ◽  
pp. 173-178 ◽  
Author(s):  
Edward A. Bender ◽  
Norman P. Herzberg

Author(s):  
Rajesh Pavan Sunkari ◽  
Linda C. Schmidt

The kinematic chain isomorphism problem is one of the most challenging problems facing mechanism researchers. Methods using the spectral properties, characteristic polynomial and eigenvectors, of the graph related matrices were developed in literature for isomorphism detection. Detection of isomorphism using only the spectral properties corresponds to a polynomial time isomorphism detection algorithm. However, most of the methods used are either computationally inefficient or unreliable (i.e., failing to identify non-isomorphic chains). This work establishes the reliability of using the characteristic polynomial of the Laplace matrix for isomorphism detection of a kinematic chain. The Laplace matrix of a graph is used extensively in the field of algebraic graph theory for characterizing a graph using its spectral properties. The reliability in isomorphism detection of the characteristic polynomial of the Laplace matrix was comparable with that of the adjacency matrix. However, using the characteristic polynomials of both the matrices is superior to using either method alone. In search for a single matrix whose characteristic polynomial unfailingly detects isomorphism, novel matrices called the extended adjacency matrices are developed. The reliability of the characteristic polynomials of these matrices is established. One of the proposed extended adjacency matrices is shown to be the best graph matrix for isomorphism detection using the characteristic polynomial approach.


Author(s):  
Artem Lopatin

We consider the algebra of invariants of [Formula: see text]-tuples of [Formula: see text] matrices under the action of the orthogonal group by simultaneous conjugation over an infinite field of characteristic [Formula: see text] different from two. It is well known that this algebra is generated by the coefficients of the characteristic polynomial of all products of generic and transpose generic [Formula: see text] matrices. We establish that in case [Formula: see text] the maximal degree of indecomposable invariants tends to infinity as [Formula: see text] tends to infinity. In other words, there does not exist a constant [Formula: see text] such that it only depends on [Formula: see text] and the considered algebra of invariants is generated by elements of degree less than [Formula: see text] for any [Formula: see text]. This result is well-known in case of the action of the general linear group. On the other hand, for the rest of [Formula: see text] the given phenomenon does not hold. We investigate the same problem for the cases of symmetric and skew-symmetric matrices.


2004 ◽  
Vol 2004 (31) ◽  
pp. 1617-1622
Author(s):  
Bau-Sen Du

Letn≥2be an integer and letP={1,2,…,n,n+1}. LetZpdenote the finite field{0,1,2,…,p−1}, wherep≥2is a prime. Then every mapσonPdetermines a realn×nPetrie matrixAσwhich is known to contain information on the dynamical properties such as topological entropy and the Artin-Mazur zeta function of the linearization ofσ. In this paper, we show that ifσis acyclicpermutation onP, then all such matricesAσare similar to one another overZ2(but not overZpfor any primep≥3) and their characteristic polynomials overZ2are all equal to∑k=0nxk. As a consequence, we obtain that ifσis acyclicpermutation onP, then the coefficients of the characteristic polynomial ofAσare all odd integers and hence nonzero.


1994 ◽  
Vol 17 (3) ◽  
pp. 503-510 ◽  
Author(s):  
Moo Young Sohn ◽  
Jaeun Lee

In this paper, we introduce weighted graph bundles and study their characteristic polynomial. In particular, we show that the characteristic polynomial of a weightedK2(K¯2)-bundles over a weighted graphG?can be expressed as a product of characteristic polynomials two weighted graphs whose underlying graphs areGAs an application, we compute the signature of a link whose corresponding weighted graph is a double covering of that of a given link.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1663
Author(s):  
Alexander Farrugia

Let G be a simple graph and {1,2,…,n} be its vertex set. The polynomial reconstruction problem asks the question: given a deck P(G) containing the n characteristic polynomials of the vertex deleted subgraphs G−1, G−2, …, G−n of G, can ϕ(G,x), the characteristic polynomial of G, be reconstructed uniquely? To date, this long-standing problem has only been solved in the affirmative for some specific classes of graphs. We prove that if there exists a vertex v such that more than half of the eigenvalues of G are shared with those of G−v, then this fact is recognizable from P(G), which allows the reconstruction of ϕ(G,x). To accomplish this, we make use of determinants of certain walk matrices of G. Our main result is used, in particular, to prove that the reconstruction of the characteristic polynomial from P(G) is possible for a large subclass of disconnected graphs, strengthening a result by Sciriha and Formosa.


Sign in / Sign up

Export Citation Format

Share Document