single matrix
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 29)

H-INDEX

14
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Abdelaziz Abu El-fadl ◽  
Amna Eltokhey ◽  
A. A. Abu-Sehly ◽  
Amina A. Abozeed

Abstract In the present study, Fex/ZrO2 (0 ≤ x ≤ 25) nanoparticles were synthesized by a facile modified Sol-Gel method. Stabilization of the tetragonal phase of ZrO2 is studied as a function of both the Fe incorporation ratios and thermal treatment. The Fe incorporation ratios are tested up to the extreme just before FeO and Fe2O3 phases are formed separately. The prepared Fex/ZrO2 nanoparticles XRD analysis depicts the formation of zirconium oxide at different Fe ratios in the nanoscale with an excellent degree of crystallinity in the tetragonal phase. The effect of thermal treatment on stabilizing the tetragonal phase of Fex/ZrO2 nanoparticles is extensively studied. The phase transition to the monoclinic phase is determined as function of Fe incorporation ratios and annealing temperatures. The optical absorbance spectra showed that the optical band gap decreased with increasing Fe ratios without the formation of doping bands which confirms the formation of Fex/ZrO2 single matrix.


2021 ◽  
Vol 13 (2) ◽  
pp. 56-61
Author(s):  
Iwan Setiawan ◽  
Akbari Indra Basuki ◽  
Didi Rosiyadi

High performance computing (HPC) is required for image processing especially for picture element (pixel) with huge size. To avoid dependence to HPC equipment which is very expensive to be provided, the soft approach has been performed in this work. Actually, both hard and soft methods offer similar goal which are to reach time computation as short as possible. The discrete cosine transformation (DCT) and singular values decomposition (SVD) are conventionally performed to original image by consider it as a single matrix. This will result in computational burden for images with huge pixel. To overcome this problem, the second order matrix has been performed as block matrix to be applied on the original image which delivers the DCT-SVD hybrid formula. Hybrid here means the only required parameter shown in formula is intensity of the original pixel as the DCT and SVD formula has been merged in derivation. Result shows that when using Lena as original image, time computation of the singular values using the hybrid formula is almost two seconds faster than the conventional. Instead of pushing hard to provide the equipment, it is possible to overcome computational problem due to the size simply by using the proposed formula.


2021 ◽  
Vol 37 ◽  
pp. 718-733
Author(s):  
Semra Ozturk

A new necessary and sufficient condition for the existence of an $m$-th root of a nilpotent matrix in terms of the multiplicities of Jordan blocks is obtained and expressed as a system of linear equations with nonnegative integer entries which is suitable for computer programming. Thus, computation of the Jordan form of the $m$-th power of a nilpotent matrix is reduced to a single matrix multiplication; conversely, the existence of an $m$-th root of a nilpotent matrix is reduced to the existence of a nonnegative integer solution to the corresponding system of linear equations. Further, an erroneous result in the literature on the total number of Jordan blocks of a nilpotent matrix having an $m$-th root is corrected and generalized. Moreover, for a singular matrix having an $m$-th root with a pair of nilpotent Jordan blocks of sizes $s$ and $l$, a new $m$-th root is constructed by replacing that pair by another one of sizes $s+i$ and $l-i$, for special $s,l,i$. This method applies to solutions of a system of linear equations having a special matrix of coefficients. In addition, for a matrix $A$ over an arbitrary field that is a sum of two commuting matrices, several results for the existence of $m$-th roots of $A^k$ are obtained.


2021 ◽  
Vol 21 (12) ◽  
pp. 5890-5895
Author(s):  
Jian Zhou ◽  
Jian-Wen Zhao ◽  
Si-Li Ren ◽  
Jun Dong

ScPO4:Eu3+, Tb3+ phosphors with tuned emission color were prepared through high temperature solid-state reaction. The structure, morphology and photoluminescence properties of the title samples were collected by XRD, SEM and fluorescence spectrophotometer, respectively. Co-doping Eu3+ and Tb3+ in ScPO4 does not change the body-centered tetragonal structure of the host. And the morphology remains essentially unchanged except for slight agglomeration. Changing the ratio of Tb3+/Eu3+, the tuned emission can be achieved, the color could be adjusted from green through yellow to orange-red. The ScPO4:0.03Tb3+, 0.03Eu3+ phosphor with high thermal stability as the single matrix phosphor can be suitable for the NUV-pumped white LED. The white LED with a color rendering index of 86.5 and a correlated color temperature of 3470 K has been generated by packaging BAM:Eu2+ with ScPO4:0.03Tb3+, 0.03Eu3+ on an NUV-InGaN chip.


Author(s):  
Diogo R. Ferreira ◽  
Pedro J. Carvalho ◽  
Ivo S. Carvalho ◽  
Chris I. Stuart ◽  
Peter J. Lomas

Abstract As JET is developing and testing operational scenarios for higher fusion performance, an increase in pulse disruptivity is being observed. On a deeper analysis, we find that several radiative phenomena play an active role in determining the outcome of the pulse. The analysis is enabled by the use of real-time tomography based on the bolometer diagnostic. Even though plasma tomography is an inverse problem, we use machine learning to train a forward model that provides the radiation profile directly, based on a single matrix multiplication step. This model is used to investigate radiative phenomena including sawtooth crashes, ELMs and MARFE, and their relationship to the radiated power in different regions of interest. In particular, we use real-time tomography to monitor the core region, and to throw an alarm whenever core radiation exceeds a certain threshold. Our results suggest that this measure alone can anticipate a significant fraction of disruptions in the JET baseline scenario.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12423
Author(s):  
Bryan M. Gee

The phylogenetic relationships of most Paleozoic tetrapod clades remain poorly resolved, which is variably attributed to a lack of study, the limitations of inference from phenotypic data, and constant revision of best practices. While refinement of phylogenetic methods continues to be important, any phylogenetic analysis is inherently constrained by the underlying dataset that it analyzes. Therefore, it becomes equally important to assess the accuracy of these datasets, especially when a select few are repeatedly propagated. While repeat analyses of these datasets may appear to constitute a working consensus, they are not in fact independent, and it becomes especially important to evaluate the accuracy of these datasets in order to assess whether a seeming consensus is robust. Here I address the phylogeny of the Dissorophidae, a speciose clade of Paleozoic temnospondyls. This group is an ideal case study among temnospondyls for exploring phylogenetic methods and datasets because it has been extensively studied (eight phylogenetic studies to date) but with most (six studies) using a single matrix that has been propagated with very little modification. In spite of the conserved nature of the matrix, dissorophid studies have produced anything but a conserved topology. Therefore, I analyzed an independently designed matrix, which recovered less resolution and some disparate nodes compared to previous studies. In order to reconcile these differences, I carefully examined previous matrices and analyses. While some differences are a matter of personal preference (e.g., analytical software), others relate to discrepancies with respect to what are currently considered as best practices. The most concerning discovery was the identification of pervasive dubious scorings that extend back to the origins of the widely propagated matrix. These include scores for skeletal features that are entirely unknown in a given taxon (e.g., postcrania in Cacops woehri) and characters for which there appear to be unstated working assumptions to scoring that are incompatible with the character definitions (e.g., scoring of taxa with incomplete skulls for characters based on skull length). Correction of these scores and other pervasive errors recovered a distinctly less resolved topology than previous studies, more in agreement with my own matrix. This suggests that previous analyses may have been compromised, and that the only real consensus of dissorophid phylogeny is the lack of one.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3363
Author(s):  
Obinna Ofoegbu ◽  
David Chukwuebuka Ike ◽  
Gaber El-Saber Batiha ◽  
Hassan Fouad ◽  
Roongnapa S. Srichana ◽  
...  

This study reports the feasible use of chitosan as a thin film biosensor on the very sensitive quartz crystal micro balance system for detection of blends of multiple templates within a single matrix. The development of chitosan-based thin film materials with selectivity for nicotine derivatives is described. The molecular imprinting of a combination of nicotine derivatives in N-diacryloyl pipiradine-chitosan-methacrylic acid copolymer films on quartz crystal resonators was used to generate thin films with selectivity for nicotine and a range of nicotine analogues, particularly 3-phenylpyridine. The polymers were characterized by spectroscopic and microscopic evaluations; surface area, pore size, pore volume using Breuner-Emmet-Teller method. Temperature characteristics were also studied. The swelling and structure consistency of the Chitosan was achieved by grafting with methylmethacrylic acid and cross-linking with N-diacrylol pipiradine. A blend of 0.002 g (0.04 mmol) of Chitosan, 8.5 μL Methylmethacrylic Acid and 1.0 mg N-diacrylol pipradine (BAP) presented the best blend formulation. Detections were made within a time interval of 99 sec, and blend templates were detected at a concentration of 0.5 mM from the Quartz crystal microbalance resonator analysis. The successful crosslinking of the biopolymers ensured successful control of the swelling and agglomeration of the chitosan, giving it the utility potential for use as thin film sensor. This successful crosslinking also created successful dual multiple templating on the chitosan matrix, even for aerosolized templates. The products can be used in environments with temperature ranges between 60 °C and 250 °C.


Author(s):  
L. Agustín-Hernández ◽  
R. Argiolas ◽  
V. Bagnolo ◽  
M. Sancho Mir

Abstract. The contribution aims to explore the possibility of tracing the geometry of ribbed vaults from two different Mediterranean regions to a single matrix, verifying the presence of possible local variations of the same rules. In particular, the analyses are being carried out in parallel on some case studies of the regions of Sardinia in Italy and Aragon in Spain. The two case studies include the Iglesia Parroquial del Salvador la Seo in Zaragoza and the Church of Santa Lucia in Cagliari. Both constructions can be traced back to the style known as Late Mediterranean Gothic, which characterised the architecture of the countries bordering the Mediterranean basin between the 14th and 17th centuries. The two case studies chosen were almost at the extreme ends of the Late Gothic period, to determine whether some invariants sought could persist even in relatively distant periods. The analysis focused on cross vaults covering the two naves, which included a laser scanner survey in order to obtain a cloud of points of sufficient precision to carry out studies on the geometry of the vaulted systems, the identification of the intrados profiles of the ribs and therefore the definition of the curvatures and centres of all the arches making up the vaults. Finally, the results are presented by means of summary diagrams and comparison tables.


2021 ◽  
Vol Volume 17, Issue 3 ◽  
Author(s):  
Michael Blondin ◽  
Christoph Haase ◽  
Filip Mazowiecki ◽  
Mikhail Raskin

We study the reachability problem for affine $\mathbb{Z}$-VASS, which are integer vector addition systems with states in which transitions perform affine transformations on the counters. This problem is easily seen to be undecidable in general, and we therefore restrict ourselves to affine $\mathbb{Z}$-VASS with the finite-monoid property (afmp-$\mathbb{Z}$-VASS). The latter have the property that the monoid generated by the matrices appearing in their affine transformations is finite. The class of afmp-$\mathbb{Z}$-VASS encompasses classical operations of counter machines such as resets, permutations, transfers and copies. We show that reachability in an afmp-$\mathbb{Z}$-VASS reduces to reachability in a $\mathbb{Z}$-VASS whose control-states grow linearly in the size of the matrix monoid. Our construction shows that reachability relations of afmp-$\mathbb{Z}$-VASS are semilinear, and in particular enables us to show that reachability in $\mathbb{Z}$-VASS with transfers and $\mathbb{Z}$-VASS with copies is PSPACE-complete. We then focus on the reachability problem for affine $\mathbb{Z}$-VASS with monogenic monoids: (possibly infinite) matrix monoids generated by a single matrix. We show that, in a particular case, the reachability problem is decidable for this class, disproving a conjecture about affine $\mathbb{Z}$-VASS with infinite matrix monoids we raised in a preliminary version of this paper. We complement this result by presenting an affine $\mathbb{Z}$-VASS with monogenic matrix monoid and undecidable reachability relation.


Sign in / Sign up

Export Citation Format

Share Document