scholarly journals λ-Symmetry and μ-Symmetry Reductions and Invariant Solutions of Four Nonlinear Differential Equations

Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1138
Author(s):  
Yu-Shan Bai ◽  
Jian-Ting Pei ◽  
Wen-Xiu Ma

On one hand, we construct λ-symmetries and their corresponding integrating factors and invariant solutions for two kinds of ordinary differential equations. On the other hand, we present μ-symmetries for a (2+1)-dimensional diffusion equation and derive group-reductions of a first-order partial differential equation. A few specific group invariant solutions of those two partial differential equations are constructed.

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Gülden Gün ◽  
Teoman Özer

We analyze Noether and -symmetries of the path equation describing the minimum drag work. First, the partial Lagrangian for the governing equation is constructed, and then the determining equations are obtained based on the partial Lagrangian approach. For specific altitude functions, Noether symmetry classification is carried out and the first integrals, conservation laws and group invariant solutions are obtained and classified. Then, secondly, by using the mathematical relationship with Lie point symmetries we investigate -symmetry properties and the corresponding reduction forms, integrating factors, and first integrals for specific altitude functions of the governing equation. Furthermore, we apply the Jacobi last multiplier method as a different approach to determine the new forms of -symmetries. Finally, we compare the results obtained from different classifications.


2011 ◽  
Vol 2011 ◽  
pp. 1-12
Author(s):  
R. Naz

The group-invariant solutions for nonlinear third-order partial differential equation (PDE) governing flow in two-dimensional jets (free, wall, and liquid) having finite fluid velocity at orifice are constructed. The symmetry associated with the conserved vector that was used to derive the conserved quantity for the jets (free, wall, and liquid) generated the group invariant solution for the nonlinear third-order PDE for the stream function. The comparison between results for two-dimensional jet flows having finite and infinite fluid velocity at orifice is presented. The general form of the group invariant solution for two-dimensional jets is given explicitly.


1992 ◽  
Vol 47 (11) ◽  
pp. 1161-1174 ◽  
Author(s):  
H. Kötz

Abstract Lie group analysis is a powerful tool for obtaining exact similarity solutions of nonlinear (integro-) differential equations. In order to calculate the group-invariant solutions one first has to find the full Lie point symmetry group admitted by the given (integro-)differential equations and to determine all the subgroups of this Lie group. An effective, systematic means to classify the similarity solutions afterwards is an "optimal system", i.e. a list of group-invariant solutions from which every other such solution can be derived. The problem to find optimal systems of similarity solutions leads to that to "construct" the optimal systems of subalgebras for the Lie algebra of the known Lie point symmetry group. Our aim is to demonstrate a practicable technique for determining these optimal subalgebraic systems using the invariants relative to the group of the inner automorphisms of the Lie algebra in case of a finite-dimensional Lie point symmetry group. Here, we restrict our attention to optimal subsystems of solvable Lie subalgebras. This technique is applied to the nine-dimensional real Lie point symmetry group admitted by the two-dimensional non-stationary ideal magnetohydrodynamic equations


1995 ◽  
Vol 6 (4) ◽  
pp. 329-354 ◽  
Author(s):  
Jeffrey Ondich

Ovsiannikov's partially invariant solutions of differential equations generalize Lie's group invariant solutions. A partially invariant solution is only interesting if it cannot be discovered more readily as an invariant solution. Roughly, a partially invariant solution that can be discovered more directly by Lie's method is said to be reducible. In this paper, I develop conditions under which a partially invariant solution or a class of such solutions must be reducible, and use these conditions both to obtain non-reducible solutions to a system of hyperbolic conservation laws, and to demonstrate that some systems have no non-reducible solutions. I also demonstrate that certain elliptic systems have no non-reducible solutions.


2009 ◽  
Vol 14 (4) ◽  
pp. 495-502 ◽  
Author(s):  
Bienvenue Feugang Nteumagne ◽  
Raseelo J. Moitsheki

We consider a bond‐pricing model described in terms of partial differential equations (PDEs). Classical Lie point symmetry analysis of the considered PDEs resulted in a number of point symmetries being admitted. The one‐dimensional optimal system of subalgebras is constructed. Following the symmetry reductions, we determine the group‐invariant solutions.


Sign in / Sign up

Export Citation Format

Share Document