invariant solution
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 31)

H-INDEX

11
(FIVE YEARS 2)

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2101
Author(s):  
Oksana A. Burmistrova ◽  
Sergey V. Meleshko ◽  
Vladislav V. Pukhnachev

The paper presents new exact solutions of equations derived earlier. Three of them describe unsteady motions of a polymer solution near the stagnation point. A class of partially invariant solutions with a wide functional arbitrariness is found. An invariant solution of the stationary problem in which the solid boundary is a logarithmic curve is constructed.


Author(s):  
VISHAKHA JADAUN ◽  
Navnit Jha ◽  
Sachin Ramola

The Lie group of infinitesimal transformations technique and similarity reduction is performed for obtaining an exact invariant solution to generalized Kadomstev-Petviashvili-Boussinesq (gKPB) equation in (3+1)-dimensions. We obtain generators of infinitesimal transformations, which provide us a set of Lie algebras. In addition, we get geometric vector fields, a commutator table of Lie algebra, and a group of symmetries. It is observed that the analytic solution (closed-form solutions) to the nonlinear gKPB evolution equations can easily be treated employing the Lie symmetry technique. A detailed geometrical framework related to the nature of the solutions possessing traveling wave, bright and dark soliton, standing wave with multiple breathers, and one-dimensional kink, for the appropriate values of the parameters involved.


Author(s):  
Zahid Hussain

In this manuscript, the Lie group technique is applied to construct a new OS and invariant solutions of a one-dimensional LA, which describes the symmetries properties of a nonlinear Black-Scholes model. The structure of LA depends on one parameter. We have shown a novel way to construct the so-called OS of subalgebras of the Black-Scholes equation by utilizing the given symmetries. We transform the symmetries of the Black-Scholes equation into a simple ordinary differential equation called the Lie equation, which provides us a way through which to construct a new optimal scheme of subalgebras of the Black-Scholes through applying the concept of LE. The OS which consists of minimal representatives is utilized to develop the invariant solution for the Black-Scholes equation. The fundamental use of the Lie group analysis to the differential equation is the categorization of group invariant solutions of differential equations via OS. Finally, we have utilized the OS to construct the invariant solution of the Black-Scholes equation.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Na Xiong ◽  
Ya-Xuan Yu ◽  
Biao Li

By N -soliton solutions and a velocity resonance mechanism, soliton molecules are constructed for the KdV-Sawada-Kotera-Ramani (KSKR) equation, which is used to simulate the resonances of solitons in one-dimensional space. An asymmetric soliton can be formed by adjusting the distance between two solitons of soliton molecule to small enough. The interactions among multiple soliton molecules for the equation are elastic. Then, full symmetry group is derived for the KSKR equation by the symmetry group direct method. From the full symmetry group, a general group invariant solution can be obtained from a known solution.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 847
Author(s):  
Maba Boniface Matadi ◽  
Phumlani Lawrence Zondi

This paper analyses the model of Black–Scholes option pricing from the point of view of the group theoretic approach. The study identified new independent variables that lead to the transformation of the Black–Scholes equation. Furthermore, corresponding determining equations were constructed and new symmetries were found. As a result, the findings of the study demonstrate of the integrability of the model to present an invariant solution for the Ornstein–Uhlenbeck stochastic process.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Stefan Fredenhagen ◽  
Harold C. Steinacker

Abstract We elaborate the description of the semi-classical gravity sector of Yang-Mills matrix models on a covariant quantum FLRW background. The basic geometric structure is a frame, which arises from the Poisson structure on an underlying S2 bundle over space-time. The equations of motion for the associated Weitzenböck torsion obtained in [1] are rewritten in the form of Yang-Mills-type equations for the frame. An effective action is found which reproduces these equations of motion, which contains an Einstein-Hilbert term coupled to a dilaton, an axion and a Maxwell-type term for the dynamical frame. An explicit rotationally invariant solution is found, which describes a gravitational field coupled to the dilaton.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jian Liang Yang

We make a systematic examination of the basic theory of general relativity and reemphasize the meaning of coordinates. Firstly, we prove that Einsteinʼs gravitational field equation has the light speed invariant solution and black holes are not an inevitable prediction of general relativity. Second, we show that the coupling coefficient of the gravitational field equation is not unique and can be modified as 4 π G to replace the previous − 8 π G , distinguish gravitational mass from the inertial mass, and prove that dark matter and dark energy are not certain existence and the expansion and contraction of the universe are proven cyclic, and a new distance-redshift relation which is more practical is derived. After that, we show that galaxies and celestial bodies are formed by gradual growth rather than by the accumulation of existing matter and prove that new matter is generating gradually in the interior of celestial bodies. For example, the radius of the Earth increases by 0.5 mm every year, and its mass increases by 1.2 trillion tons. A more reasonable derivation of the precession of planetary orbits is given, and the evolution equation of planetary orbits in the expanding space-time is also given. In a word, an alive universe unfolds in front of readers and the current cosmological difficulties are given new interpretations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
L. V. Gambuzza ◽  
F. Di Patti ◽  
L. Gallo ◽  
S. Lepri ◽  
M. Romance ◽  
...  

AbstractVarious systems in physics, biology, social sciences and engineering have been successfully modeled as networks of coupled dynamical systems, where the links describe pairwise interactions. This is, however, too strong a limitation, as recent studies have revealed that higher-order many-body interactions are present in social groups, ecosystems and in the human brain, and they actually affect the emergent dynamics of all these systems. Here, we introduce a general framework to study coupled dynamical systems accounting for the precise microscopic structure of their interactions at any possible order. We show that complete synchronization exists as an invariant solution, and give the necessary condition for it to be observed as a stable state. Moreover, in some relevant instances, such a necessary condition takes the form of a Master Stability Function. This generalizes the existing results valid for pairwise interactions to the case of complex systems with the most general possible architecture.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 224
Author(s):  
Ghaylen Laouini ◽  
Amr M. Amin ◽  
Mohamed Moustafa

A comprehensive study of the negative-order Kadomtsev–Petviashvili (nKP) partial differential equation by Lie group method has been presented. Initially the infinitesimal generators and symmetry reduction, which were obtained by applying the Lie group method on the negative-order Kadomtsev–Petviashvili equation, have been used for constructing the reduced equations. In particular, the traveling wave solutions for the negative-order KP equation have been derived from the reduced equations as an invariant solution. Finally, the extended improved (G′/G) method and the extended tanh method are described and applied in constructing new explicit expressions for the traveling wave solutions. Many new and more general exact solutions are obtained.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Mónica Clapp ◽  
Angela Pistoia

<p style='text-indent:20px;'>We prove the existence of regular optimal <inline-formula><tex-math id="M1">\begin{document}$ G $\end{document}</tex-math></inline-formula>-invariant partitions, with an arbitrary number <inline-formula><tex-math id="M2">\begin{document}$ \ell\geq 2 $\end{document}</tex-math></inline-formula> of components, for the Yamabe equation on a closed Riemannian manifold <inline-formula><tex-math id="M3">\begin{document}$ (M,g) $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M4">\begin{document}$ G $\end{document}</tex-math></inline-formula> is a compact group of isometries of <inline-formula><tex-math id="M5">\begin{document}$ M $\end{document}</tex-math></inline-formula> with infinite orbits. To this aim, we study a weakly coupled competitive elliptic system of <inline-formula><tex-math id="M6">\begin{document}$ \ell $\end{document}</tex-math></inline-formula> equations, related to the Yamabe equation. We show that this system has a least energy <inline-formula><tex-math id="M7">\begin{document}$ G $\end{document}</tex-math></inline-formula>-invariant solution with nontrivial components and we show that the limit profiles of its components separate spatially as the competition parameter goes to <inline-formula><tex-math id="M8">\begin{document}$ -\infty $\end{document}</tex-math></inline-formula>, giving rise to an optimal partition. For <inline-formula><tex-math id="M9">\begin{document}$ \ell = 2 $\end{document}</tex-math></inline-formula> the optimal partition obtained yields a least energy sign-changing <inline-formula><tex-math id="M10">\begin{document}$ G $\end{document}</tex-math></inline-formula>-invariant solution to the Yamabe equation with precisely two nodal domains.</p>


Sign in / Sign up

Export Citation Format

Share Document