scholarly journals Double Parametric Fuzzy Numbers Approximate Scheme for Solving One-Dimensional Fuzzy Heat-Like and Wave-Like Equations

Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1737
Author(s):  
Ali Fareed Jameel ◽  
Sarmad A. Jameel Altaie ◽  
Sardar Gul Amen Aljabbari ◽  
Abbas AlZubaidi ◽  
Noraziah Haji Man

This article discusses an approximate scheme for solving one-dimensional heat-like and wave-like equations in fuzzy environment based on the homotopy perturbation method (HPM). The concept of topology in homotopy is used to create a convergent series solution of the fuzzy equations. The objective of the study is to formulate the double parametric fuzzy HPM to obtain approximate solutions of fuzzy heat-like and fuzzy wave-like equations. The fuzzification and the defuzzification analysis for the double parametric form of fuzzy numbers of the fuzzy heat-like and the fuzzy wave-like equations is carried out. The proof of convergence of the solution under the developed approximate scheme is provided. The effectiveness of the proposed method is tested by numerically solving examples of fuzzy heat-like and wave-like equations where results indicate that the approach is efficient not only in terms of accuracy but also with respect to CPU time consumption.

2009 ◽  
Vol 64 (12) ◽  
pp. 788-794 ◽  
Author(s):  
Mohamed M. Mousa ◽  
Aidarkhan Kaltayev

Abstract The fractional Fokker-Planck equation (FFPE) has been used in many physical transport problems which take place under the influence of an external force field and other important applications in various areas of engineering and physics. In this paper, by means of the homotopy perturbation method (HPM), exact and approximate solutions are obtained for two classes of the FFPE initial value problems. The method gives an analytic solution in the form of a convergent series with easily computed components. The obtained results show that the HPM is easy to implement, accurate and reliable for solving FFPEs. The method introduces a promising tool for solving other types of differential equation with fractional order derivatives


Author(s):  
Najeeb Alam Khan ◽  
Asmat Ara ◽  
Amir Mahmood

In this paper, we present the approximate solutions of the time fractional chemical engineering equations by means of the variational iteration method (VIM) and homotopy perturbation method (HPM). The fractional derivatives are described in the Caputo sense. The solutions of the chemical reactor, reaction, and concentration equations are calculated in the form of convergent series with easily computable components. We compared the HPM against the VIM; an additional comparison will be made against the conventional numerical method. The results show that HPM is more promising, convenient, and efficient than VIM.


2017 ◽  
Vol 9 (2) ◽  
pp. 134
Author(s):  
Hind Al-badrani ◽  
F. A. Hendi ◽  
Wafa Shammakh

In this paper, the approximate solutions for  quadratic integral equations (QIEs) are given by the variational iteration method(VIM) and homotopy perturbation method (HPM). These methods produce the solutions in terms of convergent series without needing to restrictive assumptions, to illustrate the ability and credibility of the methods, we deal with some examples that show simplicity and effectiveness.


2010 ◽  
Vol 65 (12) ◽  
pp. 1077-1080 ◽  
Author(s):  
Syed Tauseef Mohyud-Din ◽  
Ahmet Yıldırım ◽  
Yasemin Kaplan

In this study, we use the homotopy perturbation method (HPM) to solve an initial-boundary value problem with a non-classic condition for the one-dimensional wave equation.We will deal with a new type of non-local boundary value problems which are the solution of hyperbolic partial differential equations with a non-standard boundary specification. The method is very reliable and effective and provides the solution in terms of rapid convergent series. Several examples are tested to support our study.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Sara H. M. Hamed ◽  
Eltayeb A. Yousif ◽  
Arbab I. Arbab

A combination of homotopy perturbation method and Sumudu transform is applied to find exact and approximate solution of space and time fractional nonlinear Schrödinger equation. The fractional derivatives are described in the Caputo sense. The solutions are given in the form of convergent series with easily computable components. The results show that the method is effective and convenient for solving nonlinear differential equations of fractional order.


2020 ◽  
Vol 9 (1) ◽  
pp. 370-381
Author(s):  
Dinkar Sharma ◽  
Gurpinder Singh Samra ◽  
Prince Singh

AbstractIn this paper, homotopy perturbation sumudu transform method (HPSTM) is proposed to solve fractional attractor one-dimensional Keller-Segel equations. The HPSTM is a combined form of homotopy perturbation method (HPM) and sumudu transform using He’s polynomials. The result shows that the HPSTM is very efficient and simple technique for solving nonlinear partial differential equations. Test examples are considered to illustrate the present scheme.


1970 ◽  
Vol 30 ◽  
pp. 59-75
Author(s):  
M Alhaz Uddin ◽  
M Abdus Sattar

 In this paper, the second order approximate solution of a general second order nonlinear ordinary differential system, modeling damped oscillatory process is considered. The new analytical technique based on the work of He’s homotopy perturbation method is developed to find the periodic solution of a second order ordinary nonlinear differential system with damping effects. Usually the second or higher order approximate solutions are able to give better results than the first order approximate solutions. The results show that the analytical approximate solutions obtained by homotopy perturbation method are uniformly valid on the whole solutions domain and they are suitable not only for strongly nonlinear systems, but also for weakly nonlinear systems. Another advantage of this new analytical technique is that it also works for strongly damped, weakly damped and undamped systems. Figures are provided to show the comparison between the analytical and the numerical solutions. Keywords: Homotopy perturbation method; damped oscillation; nonlinear equation; strong nonlinearity. GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 30 (2010) 59-75  DOI: http://dx.doi.org/10.3329/ganit.v30i0.8504


2009 ◽  
Vol 23 (30) ◽  
pp. 3667-3675 ◽  
Author(s):  
AHMET YILDIRIM

We implemented homotopy perturbation method for approximating the solution to the nonlinear dispersive K(m,n,1) type equations. By using this scheme, the explicit exact solution is calculated in the form of a quickly convergent series with easily computable components. To illustrate the application of this method, numerical results are derived by using the calculated components of the homotopy perturbation series.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yanqin Liu

We consider the initial stage of space-time fractional generalized biological equation in radial symmetry. Dimensionless multiorder fractional nonlinear equation was first given, and approximate solutions were derived in the form of series using the homotopy perturbation method with a new modification. And the influence of fractional derivative is also discussed.


Sign in / Sign up

Export Citation Format

Share Document