scholarly journals On the Stability of Linear Incommensurate Fractional-Order Difference Systems

Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1754
Author(s):  
Noureddine Djenina ◽  
Adel Ouannas ◽  
Iqbal M. Batiha ◽  
Giuseppe Grassi ◽  
Viet-Thanh Pham

To follow up on the progress made on exploring the stability investigation of linear commensurate Fractional-order Difference Systems (FoDSs), such topic of its extended version that appears with incommensurate orders is discussed and examined in this work. Some simple applicable conditions for judging the stability of these systems are reported as novel results. These results are formulated by converting the linear incommensurate FoDS into another equivalent system consists of fractional-order difference equations of Volterra convolution-type as well as by using some properties of the Z-transform method. All results of this work are verified numerically by illustrating some examples that deal with the stability of solutions of such systems.

Author(s):  
Raghib Abu-Saris ◽  
Qasem Al-Mdallal

AbstractIn this paper we investigate the stability of the equilibrium solution of the νth order linear system of difference equations $(\Delta _{a + \nu - 1}^\nu y)(t) = \Lambda y(t + \nu - 1);t \in \mathbb{N}_a ,a \in \mathbb{R},and\Lambda \in \mathbb{R}^{p \times p} ,$ subject to the initial condition $y(a + \nu - 1) = y - 1,$, where 0 < ν < 1 and y−1 ∈ ℝp.


Author(s):  
Mohd Taib Shatnawi ◽  
Noureddine Djenina ◽  
Adel Ouannas ◽  
Iqbal M. Batiha ◽  
Giuseppe Grassi

2009 ◽  
Vol 16 (4) ◽  
pp. 597-616
Author(s):  
Shota Akhalaia ◽  
Malkhaz Ashordia ◽  
Nestan Kekelia

Abstract Necessary and sufficient conditions are established for the stability in the Lyapunov sense of solutions of a linear system of generalized ordinary differential equations 𝑑𝑥(𝑡) = 𝑑𝐴(𝑡) · 𝑥(𝑡) + 𝑑𝑓(𝑡), where and are, respectively, matrix- and vector-functions with bounded total variation components on every closed interval from . The results are realized for the linear systems of impulsive, ordinary differential and difference equations.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
A. George Maria Selvam ◽  
Jehad Alzabut ◽  
Mary Jacintha ◽  
Abdullah Özbekler

The paper studies the oscillation of a class of nonlinear fractional order difference equations with damping term of the form Δψλzηλ+pλzηλ+qλF∑s=λ0λ−1+μ λ−s−1−μys=0, where zλ=aλ+bλΔμyλ, Δμ stands for the fractional difference operator in Riemann-Liouville settings and of order μ, 0<μ≤1, and η≥1 is a quotient of odd positive integers and λ∈ℕλ0+1−μ. New oscillation results are established by the help of certain inequalities, features of fractional operators, and the generalized Riccati technique. We verify the theoretical outcomes by presenting two numerical examples.


2022 ◽  
pp. 257-286
Author(s):  
Amina-Aicha Khennaoui ◽  
Adel Ouannas ◽  
Iqbal M. Batiha ◽  
Viet-Thanh Pham

2017 ◽  
Vol 65 (6) ◽  
pp. 891-898 ◽  
Author(s):  
M. Wyrwas

AbstractThe paper is devoted to the construction of observers for linear fractional multi–order difference systems with Riemann–Liouville– and Grünwald–Letnikov–type operators. Basing on the Z-transform method the sufficient condition for the existence of the presented observers is established. The behaviour of the constructed observer is demonstrated in numerical examples.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
J. Jagan Mohan ◽  
G. V. S. R. Deekshitulu

A difference equation is a relation between the differences of a function at one or more general values of the independent variable. These equations usually describe the evolution of certain phenomena over the course of time. The present paper deals with the existence and uniqueness of solutions of fractional difference equations.


Sign in / Sign up

Export Citation Format

Share Document