fractional difference equations
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 11)

H-INDEX

15
(FIVE YEARS 0)



2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Tuğba Yalçın Uzun

AbstractIn this paper, we study the oscillation behavior for higher order nonlinear Hilfer fractional difference equations of the type $$\begin{aligned}& \Delta _{a}^{\alpha ,\beta }y(x)+f_{1} \bigl(x,y(x+\alpha ) \bigr) =\omega (x)+f_{2} \bigl(x,y(x+ \alpha ) \bigr),\quad x\in \mathbb{N}_{a+n-\alpha }, \\& \Delta _{a}^{k-(n-\gamma )}y(x) \big|_{x=a+n-\gamma } = y_{k}, \quad k= 0,1,\ldots,n, \end{aligned}$$ Δ a α , β y ( x ) + f 1 ( x , y ( x + α ) ) = ω ( x ) + f 2 ( x , y ( x + α ) ) , x ∈ N a + n − α , Δ a k − ( n − γ ) y ( x ) | x = a + n − γ = y k , k = 0 , 1 , … , n , where $\lceil \alpha \rceil =n$ ⌈ α ⌉ = n , $n\in \mathbb{N}_{0}$ n ∈ N 0 and $0\leq \beta \leq 1$ 0 ≤ β ≤ 1 . We introduce some sufficient conditions for all solutions and give an illustrative example for our results.



Author(s):  
Mouataz Billah Mesmouli ◽  
Abdelouaheb Ardjouni ◽  
Ahcene Djoudi

In this paper, we consider a nonlinear neutral fractional difference equations. By applying Krasnoselskii's fixed point theorem, sufficient conditions for the existence of solutions are established, also the uniqueness of solutions is given. As an application of the main theorems, we provide the existence and uniqueness of the discrete fractional Lotka-Volterra model of neutral type. Our main results extend and generalize the results that are obtained in <cite>Azabut</cite>.



2021 ◽  
Vol 24 (1) ◽  
pp. 324-331
Author(s):  
Johnny Henderson ◽  
Jeffrey T. Neugebauer

Abstract For 1 < ν ≤ 2 a real number and T ≥ 3 a natural number, conditions are given for the existence of solutions of the νth order Atıcı-Eloe fractional difference equation, Δ ν y(t) + f(t + ν − 1, y(t + ν − 1)) = 0, t ∈ {0, 1, …, T}, and satisfying the left focal boundary conditions Δy(ν − 2) = y(ν + T) = 0.



Author(s):  
Huiqin Chen ◽  
Yaqiong Cui ◽  
Shugui Kang ◽  
Youmin Lu ◽  
Wenying Feng






Sign in / Sign up

Export Citation Format

Share Document