scholarly journals A Note on the Estrada Index of the Aα-Matrix

Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 811
Author(s):  
Jonnathan Rodríguez ◽  
Hans Nina

Let G be a graph on n vertices. The Estrada index of G is an invariant that is calculated from the eigenvalues of the adjacency matrix of a graph. V. Nikiforov studied hybrids of A(G) and D(G) and defined the Aα-matrix for every real α∈[0,1] as: Aα(G)=αD(G)+(1−α)A(G). In this paper, using a different demonstration technique, we present a way to compare the Estrada index of the Aα-matrix with the Estrada index of the adjacency matrix of the graph G. Furthermore, lower bounds for the Estrada index are established.

2019 ◽  
Vol 13 (06) ◽  
pp. 2050116 ◽  
Author(s):  
Akbar Jahanbani

Let [Formula: see text] be a digraph of order [Formula: see text], and [Formula: see text] be spectrum of the Hermitian adjacency matrix. The main purpose of this paper is to introduce the Hermitian energy and Hermitian Estrada index of a digraph, both based on the eigenvalues of the Hermitian matrix. Moreover, we establish upper and lower bounds for these new digraph invariants, and relations between them.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yang Yang ◽  
Lizhu Sun ◽  
Changjiang Bu

Let G be a simple graph with n vertices. Let A~αG=αDG+1−αAG, where 0≤α≤1 and AG and DG denote the adjacency matrix and degree matrix of G, respectively. EEαG=∑i=1neλi is called the α-Estrada index of G, where λ1,⋯,λn denote the eigenvalues of A~αG. In this paper, the upper and lower bounds for EEαG are given. Moreover, some relations between the α-Estrada index and α-energy are established.


2013 ◽  
Vol 313 (13) ◽  
pp. 1441-1451 ◽  
Author(s):  
Zachary B. Charles ◽  
Miriam Farber ◽  
Charles R. Johnson ◽  
Lee Kennedy-Shaffer

2018 ◽  
Vol 7 (4.10) ◽  
pp. 582
Author(s):  
K. Ameenal Bibi ◽  
B. Vijayalakshmi ◽  
R. Jothilakshmi

Let  Qn denote  the n – dimensional  hypercube  with  order   2n and  size n2n-1. The  Laplacian  L  is defined  by  L = D  where D is  the  degree  matrix and  A is  the  adjacency  matrix  with  zero  diagonal  entries.  The  Laplacian  is a  symmetric  positive  semidefinite.  Let  µ1 ≥ µ2 ≥ ....µn-1 ≥ µn = 0 be the eigen values of  the Laplacian matrix.  The  Laplacian  energy is defined as  LE(G) = . In  this  paper, we  defined  Laplacian  energy  of  a  Hypercube  graph  and  also attained  the  lower  bounds.   


2015 ◽  
Vol 07 (01) ◽  
pp. 1550005 ◽  
Author(s):  
Modjtaba Ghorbani

The concept of energy of a graph was first defined in 1978 by Gutman as the sum of the absolute values of the eigenvalues of its adjacency matrix. Let λ1, λ2, …, λn be eigenvalues of graph Γ, then the Estrada index of Γ is defined as [Formula: see text]. The aim of this paper is to estimate the energy and Estrada index of Cayley graphs Cay (G, S) where G ≅ D2n, U6n and S is a normal symmetric generating subset of G.


Author(s):  
Akbar Jahanbani

Let G be a graph with n vertices and let 1; 2; : : : ; n be the eigenvalues of Randic matrix. The Randic Estrada index of G is REE(G) = Ón i=1 ei . In this paper, we establish lower and upper bounds for Randic index in terms of graph invariants such as the number of vertices and eigenvalues of graphs and improve some previously published lower bounds.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2395
Author(s):  
Wenjie Ning ◽  
Kun Wang

The Estrada index of a graph G is defined as EE(G)=∑i=1neλi, where λ1,λ2,…,λn are the eigenvalues of the adjacency matrix of G. A unicyclic graph is a connected graph with a unique cycle. Let U(n,d) be the set of all unicyclic graphs with n vertices and diameter d. In this paper, we give some transformations which can be used to compare the Estrada indices of two graphs. Using these transformations, we determine the graphs with the maximum Estrada indices among U(n,d). We characterize two candidate graphs with the maximum Estrada index if d is odd and three candidate graphs with the maximum Estrada index if d is even.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Akbar Jahanbani ◽  
Roslan Hasni ◽  
Zhibin Du ◽  
Seyed Mahmoud Sheikholeslami

Let G be a graph of order n with vertices labeled as v1,v2,…,vn. Let di be the degree of the vertex vi, for i=1,2,…,n. The difference adjacency matrix of G is the square matrix of order n whose i,j entry is equal to di+dj−2−1/didj if the vertices vi and vj of G are adjacent or vivj∈EG and zero otherwise. Since this index is related to the degree of the vertices of the graph, our main tool will be an appropriate matrix, that is, a modification of the classical adjacency matrix involving the degrees of the vertices. In this paper, some properties of its characteristic polynomial are studied. We also investigate the difference energy of a graph. In addition, we establish some upper and lower bounds for this new energy of graph.


2009 ◽  
Vol 3 (2) ◽  
pp. 371-378 ◽  
Author(s):  
Bo Zhou ◽  
Ivan Gutman

Let G be a graph with n vertices and let ?1, ?2, . . . , ?n be its Laplacian eigenvalues. In some recent works a quantity called Laplacian Estrada index was considered, defined as LEE(G)?n1 e?i. We now establish some further properties of LEE, mainly upper and lower bounds in terms of the number of vertices, number of edges, and the first Zagreb index.


Sign in / Sign up

Export Citation Format

Share Document