scholarly journals A Note on Some Bounds of the α-Estrada Index of Graphs

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yang Yang ◽  
Lizhu Sun ◽  
Changjiang Bu

Let G be a simple graph with n vertices. Let A~αG=αDG+1−αAG, where 0≤α≤1 and AG and DG denote the adjacency matrix and degree matrix of G, respectively. EEαG=∑i=1neλi is called the α-Estrada index of G, where λ1,⋯,λn denote the eigenvalues of A~αG. In this paper, the upper and lower bounds for EEαG are given. Moreover, some relations between the α-Estrada index and α-energy are established.

2019 ◽  
Vol 13 (06) ◽  
pp. 2050116 ◽  
Author(s):  
Akbar Jahanbani

Let [Formula: see text] be a digraph of order [Formula: see text], and [Formula: see text] be spectrum of the Hermitian adjacency matrix. The main purpose of this paper is to introduce the Hermitian energy and Hermitian Estrada index of a digraph, both based on the eigenvalues of the Hermitian matrix. Moreover, we establish upper and lower bounds for these new digraph invariants, and relations between them.


2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Akbar Jahanbani ◽  
Seyed Mahmoud Sheikholeslami ◽  
Rana Khoeilar

Let G be a simple graph of order n . The matrix ℒ G = D G − A G is called the Laplacian matrix of G , where D G and A G denote the diagonal matrix of vertex degrees and the adjacency matrix of G , respectively. Let l 1 G , l n − 1 G be the largest eigenvalue, the second smallest eigenvalue of ℒ G respectively, and λ 1 G be the largest eigenvalue of A G . In this paper, we will present sharp upper and lower bounds for l 1 G and l n − 1 G . Moreover, we investigate the relation between l 1 G and λ 1 G .


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 811
Author(s):  
Jonnathan Rodríguez ◽  
Hans Nina

Let G be a graph on n vertices. The Estrada index of G is an invariant that is calculated from the eigenvalues of the adjacency matrix of a graph. V. Nikiforov studied hybrids of A(G) and D(G) and defined the Aα-matrix for every real α∈[0,1] as: Aα(G)=αD(G)+(1−α)A(G). In this paper, using a different demonstration technique, we present a way to compare the Estrada index of the Aα-matrix with the Estrada index of the adjacency matrix of the graph G. Furthermore, lower bounds for the Estrada index are established.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 582
Author(s):  
K. Ameenal Bibi ◽  
B. Vijayalakshmi ◽  
R. Jothilakshmi

Let  Qn denote  the n – dimensional  hypercube  with  order   2n and  size n2n-1. The  Laplacian  L  is defined  by  L = D  where D is  the  degree  matrix and  A is  the  adjacency  matrix  with  zero  diagonal  entries.  The  Laplacian  is a  symmetric  positive  semidefinite.  Let  µ1 ≥ µ2 ≥ ....µn-1 ≥ µn = 0 be the eigen values of  the Laplacian matrix.  The  Laplacian  energy is defined as  LE(G) = . In  this  paper, we  defined  Laplacian  energy  of  a  Hypercube  graph  and  also attained  the  lower  bounds.   


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Akbar Jahanbani ◽  
Roslan Hasni ◽  
Zhibin Du ◽  
Seyed Mahmoud Sheikholeslami

Let G be a graph of order n with vertices labeled as v1,v2,…,vn. Let di be the degree of the vertex vi, for i=1,2,…,n. The difference adjacency matrix of G is the square matrix of order n whose i,j entry is equal to di+dj−2−1/didj if the vertices vi and vj of G are adjacent or vivj∈EG and zero otherwise. Since this index is related to the degree of the vertices of the graph, our main tool will be an appropriate matrix, that is, a modification of the classical adjacency matrix involving the degrees of the vertices. In this paper, some properties of its characteristic polynomial are studied. We also investigate the difference energy of a graph. In addition, we establish some upper and lower bounds for this new energy of graph.


2009 ◽  
Vol 3 (2) ◽  
pp. 371-378 ◽  
Author(s):  
Bo Zhou ◽  
Ivan Gutman

Let G be a graph with n vertices and let ?1, ?2, . . . , ?n be its Laplacian eigenvalues. In some recent works a quantity called Laplacian Estrada index was considered, defined as LEE(G)?n1 e?i. We now establish some further properties of LEE, mainly upper and lower bounds in terms of the number of vertices, number of edges, and the first Zagreb index.


2019 ◽  
Vol 11 (01) ◽  
pp. 1950001
Author(s):  
Igor Ž. Milovanović ◽  
Emina I. Milovanović ◽  
Marjan M. Matejić ◽  
Akbar Ali

Let [Formula: see text] be a simple graph of order [Formula: see text], without isolated vertices. Denote by [Formula: see text] the adjacency matrix of [Formula: see text]. Eigenvalues of the matrix [Formula: see text], [Formula: see text], form the spectrum of the graph [Formula: see text]. An important spectrum-based invariant is the graph energy, defined as [Formula: see text]. The determinant of the matrix [Formula: see text] can be calculated as [Formula: see text]. Recently, Altindag and Bozkurt [Lower bounds for the energy of (bipartite) graphs, MATCH Commun. Math. Comput. Chem. 77 (2017) 9–14] improved some well-known bounds on the graph energy. In this paper, several inequalities involving the graph invariants [Formula: see text] and [Formula: see text] are derived. Consequently, all the bounds established in the aforementioned paper are improved.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Jia-Bao Liu ◽  
Xiang-Feng Pan ◽  
Jinde Cao

LetGbe a simple graph withnvertices and letλ1,λ2,…,λnbe the eigenvalues of its adjacency matrix; the Estrada indexEEGof the graphGis defined as the sum of the termseλi,  i=1,2,…,n. Then-dimensional folded hypercube networksFQnare an important and attractive variant of then-dimensional hypercube networksQn, which are obtained fromQnby adding an edge between any pair of vertices complementary edges. In this paper, we establish the explicit formulae for calculating the Estrada index of the folded hypercubes networksFQnby deducing the characteristic polynomial of the adjacency matrix in spectral graph theory. Moreover, some lower and upper bounds for the Estrada index of the folded hypercubes networksFQnare proposed.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1063
Author(s):  
Yilun Shang

Let G be a simple graph of order n. The Estrada index and Laplacian Estrada index of G are defined by E E ( G ) = ∑ i = 1 n e λ i ( A ( G ) ) and L E E ( G ) = ∑ i = 1 n e λ i ( L ( G ) ) , where { λ i ( A ( G ) ) } i = 1 n and { λ i ( L ( G ) ) } i = 1 n are the eigenvalues of its adjacency and Laplacian matrices, respectively. In this paper, we establish almost sure upper bounds and lower bounds for random interdependent graph model, which is fairly general encompassing Erdös-Rényi random graph, random multipartite graph, and even stochastic block model. Our results unravel the non-triviality of interdependent edges between different constituting subgraphs in spectral property of interdependent graphs.


Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Harishchandra Ramane ◽  
Xueliang Li

The distance signless Laplacian eigenvalues [Formula: see text] of a connected graph [Formula: see text] are the eigenvalues of the distance signless Laplacian matrix of [Formula: see text], defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix of vertex transmissions of [Formula: see text]. In this paper, we define and investigate the distance signless Laplacian Estrada index of a graph [Formula: see text] as [Formula: see text], and obtain some upper and lower bounds for [Formula: see text] in terms of other graph invariants. We also obtain some relations between [Formula: see text] and the auxiliary distance signless Laplacian energy of [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document