scholarly journals More on the Laplacian Estrada index

2009 ◽  
Vol 3 (2) ◽  
pp. 371-378 ◽  
Author(s):  
Bo Zhou ◽  
Ivan Gutman

Let G be a graph with n vertices and let ?1, ?2, . . . , ?n be its Laplacian eigenvalues. In some recent works a quantity called Laplacian Estrada index was considered, defined as LEE(G)?n1 e?i. We now establish some further properties of LEE, mainly upper and lower bounds in terms of the number of vertices, number of edges, and the first Zagreb index.

Filomat ◽  
2014 ◽  
Vol 28 (10) ◽  
pp. 1983-1988 ◽  
Author(s):  
Shan Gao ◽  
Huiqing Liu

Let G be a connected graph with n vertices and m edges. Let q1, q2,..., qn be the eigenvalues of the signless Laplacian matrix of G, where q1 ? q2 ? ... ? qn. The signless Laplacian Estrada index of G is defined as SLEE(G) = nPi=1 eqi. In this paper, we present some sharp lower bounds for SLEE(G) in terms of the k-degree and the first Zagreb index, respectively.


Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 325 ◽  
Author(s):  
Yilun Shang

Suppose that G is a graph over n vertices. G has n eigenvalues (of adjacency matrix) represented by λ1,λ2,⋯,λn. The Gaussian Estrada index, denoted by H(G) (Estrada et al., Chaos 27(2017) 023109), can be defined as H(G)=∑i=1ne-λi2. Gaussian Estrada index underlines the eigenvalues close to zero, which plays an important role in chemistry reactions, such as molecular stability and molecular magnetic properties. In a network of particles governed by quantum mechanics, this graph-theoretic index is known to account for the information encoded in the eigenvalues of the Hamiltonian near zero by folding the graph spectrum. In this paper, we establish some new lower bounds for H(G) in terms of the number of vertices, the number of edges, as well as the first Zagreb index.


2016 ◽  
Vol 14 (1) ◽  
pp. 641-648 ◽  
Author(s):  
Yilun Shang

Abstract As a generalization of the Sierpiński-like graphs, the subdivided-line graph Г(G) of a simple connected graph G is defined to be the line graph of the barycentric subdivision of G. In this paper we obtain a closed-form formula for the enumeration of spanning trees in Г(G), employing the theory of electrical networks. We present bounds for the largest and second smallest Laplacian eigenvalues of Г(G) in terms of the maximum degree, the number of edges, and the first Zagreb index of G. In addition, we establish upper and lower bounds for the Laplacian Estrada index of Г(G) based on the vertex degrees of G. These bounds are also connected with the number of spanning trees in Г(G).


Filomat ◽  
2018 ◽  
Vol 32 (8) ◽  
pp. 3031-3042 ◽  
Author(s):  
Ivan Gutman ◽  
Igor Milovanovic ◽  
Emina Milovanovic

Let G be a simple connected graph with n vertices and m edges, and sequence of vertex degrees d1 ? d2 ?...? dn > 0. If vertices i and j are adjacent, we write i ~ j. Denote by ?1, ?*1, Q? and H? the multiplicative Zagreb index, multiplicative sum Zagreb index, general first Zagreb index, and general sumconnectivity index, respectively. These indices are defined as ?1 = ?ni=1 d2i, ?*1 = ?i~j(di+dj), Q? = ?n,i=1 d?i and H? = ?i~j(di+dj)?. We establish upper and lower bounds for the differences H?-m (?1*)?/m and Q?-n(?1)?/2n . In this way we generalize a number of results that were earlier reported in the literature.


Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Harishchandra Ramane ◽  
Xueliang Li

The distance signless Laplacian eigenvalues [Formula: see text] of a connected graph [Formula: see text] are the eigenvalues of the distance signless Laplacian matrix of [Formula: see text], defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix of vertex transmissions of [Formula: see text]. In this paper, we define and investigate the distance signless Laplacian Estrada index of a graph [Formula: see text] as [Formula: see text], and obtain some upper and lower bounds for [Formula: see text] in terms of other graph invariants. We also obtain some relations between [Formula: see text] and the auxiliary distance signless Laplacian energy of [Formula: see text].


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Hajar Shooshtari ◽  
Jonnathan Rodriguez ◽  
Akbar Jahanbani ◽  
Abbas Shokri

Let G be a simple graph of order n and A be its adjacency matrix. Let λ 1 ≥ λ 2 ≥ … ≥ λ n be eigenvalues of matrix A . Then, the energy of a graph G is defined as ε G = ∑ i = 1 n λ i . In this paper, we will discuss the new lower bounds for the energy of nonsingular graphs in terms of degree sequence, 2-sequence, the first Zagreb index, and chromatic number. Moreover, we improve some previous well-known bounds for connected nonsingular graphs.


2016 ◽  
Vol 31 ◽  
pp. 167-186 ◽  
Author(s):  
Kinkar Das ◽  
Seyed Ahmad Mojalal

Let $G=(V,E)$ be a simple graph of order $n$ with $m$ edges. The energy of a graph $G$, denoted by $\mathcal{E}(G)$, is defined as the sum of the absolute values of all eigenvalues of $G$. The Laplacian energy of the graph $G$ is defined as \[ LE = LE(G)=\sum^n_{i=1}\left|\mu_i-\frac{2m}{n}\right| \] where $\mu_1,\,\mu_2,\,\ldots,\,\mu_{n-1},\,\mu_n=0$ are the Laplacian eigenvalues of graph $G$. In this paper, some lower and upper bounds for $\mathcal{E}(G)$ are presented in terms of number of vertices, number of edges, maximum degree and the first Zagreb index, etc. Moreover, a relation between energy and Laplacian energy of graphs is given.


2016 ◽  
Vol 08 (03) ◽  
pp. 1650040 ◽  
Author(s):  
Shaohui Wang ◽  
Bing Wei

Let [Formula: see text] be multiplicative Zagreb index of a graph [Formula: see text]. A connected graph is a cactus graph if and only if any two of its cycles have at most one vertex in common, which is a generalization of trees and has been the interest of researchers in the field of material chemistry and graph theory. In this paper, we use a new tool to obtain the upper and lower bounds of [Formula: see text] for all cactus graphs and characterize the corresponding extremal graphs.


2014 ◽  
Vol 45 ◽  
pp. 147-151 ◽  
Author(s):  
Hossein Shabani ◽  
Reza Kahkeshani

Sign in / Sign up

Export Citation Format

Share Document