scholarly journals Stabilization of Stochastic Differential Equations Driven by G-Brownian Motion with Aperiodically Intermittent Control

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 988
Author(s):  
Pengju Duan

The paper is devoted to studying the exponential stability of a mild solution of stochastic differential equations driven by G-Brownian motion with an aperiodically intermittent control. The aperiodically intermittent control is added into the drift coefficients, when intermittent intervals and coefficients satisfy suitable conditions; by use of the G-Lyapunov function, the p-th exponential stability is obtained. Finally, an example is given to illustrate the availability of the obtained results.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Elhoussain Arhrrabi ◽  
M’hamed Elomari ◽  
Said Melliani ◽  
Lalla Saadia Chadli

The existence, uniqueness, and stability of solutions to fuzzy fractional stochastic differential equations (FFSDEs) driven by a fractional Brownian motion (fBm) with the Lipschitzian condition are investigated. Finally, we investigate the exponential stability of solutions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wenyi Pei ◽  
Zhenzhong Zhang

In this paper, the exponential stability of stochastic differential equations driven by multiplicative fractional Brownian motion (fBm) with Markovian switching is investigated. The quasi-linear cases with the Hurst parameter H ∈ (1/2, 1) and linear cases with H ∈ (0, 1/2) and H ∈ (1/2, 1) are all studied in this work. An example is presented as a demonstration.


Author(s):  
Xia Zhou ◽  
Dongpeng Zhou ◽  
Shouming Zhong

Abstract This paper consider the existence, uniqueness and exponential stability in the pth moment of mild solution for impulsive neutral stochastic integro-differential equations driven simultaneously by fractional Brownian motion and by standard Brownian motion. Based on semigroup theory, the sufficient conditions to ensure the existence and uniqueness of mild solutions are obtained in terms of fractional power of operators and Banach fixed point theorem. Moreover, the pth moment exponential stability conditions of the equation are obtained by means of an impulsive integral inequality. Finally, an example is presented to illustrate the effectiveness of the obtained results.


2019 ◽  
Vol 20 (03) ◽  
pp. 2050015 ◽  
Author(s):  
Hua Zhang

In this paper, we prove a moderate deviation principle for the multivalued stochastic differential equations whose proof are based on recently well-developed weak convergence approach. As an application, we obtain the moderate deviation principle for reflected Brownian motion.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Oussama El Barrimi ◽  
Youssef Ouknine

Abstract Our aim in this paper is to establish some strong stability results for solutions of stochastic differential equations driven by a Riemann–Liouville multifractional Brownian motion. The latter is defined as a Gaussian non-stationary process with a Hurst parameter as a function of time. The results are obtained assuming that the pathwise uniqueness property holds and using Skorokhod’s selection theorem.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hossein Jafari ◽  
Marek T. Malinowski ◽  
M. J. Ebadi

AbstractIn this paper, we consider fuzzy stochastic differential equations (FSDEs) driven by fractional Brownian motion (fBm). These equations can be applied in hybrid real-world systems, including randomness, fuzziness and long-range dependence. Under some assumptions on the coefficients, we follow an approximation method to the fractional stochastic integral to study the existence and uniqueness of the solutions. As an example, in financial models, we obtain the solution for an equation with linear coefficients.


Sign in / Sign up

Export Citation Format

Share Document