scholarly journals Predator–Prey Models: A Review of Some Recent Advances

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1783
Author(s):  
Érika Diz-Pita ◽  
M. Victoria Otero-Espinar

In recent years, predator–prey systems have increased their applications and have given rise to systems which represent more accurately different biological issues that appear in the context of interacting species. Our aim in this paper is to give a state-of-the-art review of recent predator–prey models which include some interesting characteristics such as Allee effect, fear effect, cannibalism, and immigration. We compare the qualitative results obtained for each of them, particularly regarding the equilibria, local and global stability, and the existence of limit cycles.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
A. Farajzadeh ◽  
M. H. Rahmani Doust ◽  
F. Haghighifar ◽  
D. Baleanu

The study of the dynamics of predator-prey interactions can be recognized as a major issue in mathematical biology. In the present paper, some Gauss predator-prey models in which three ecologically interacting species have been considered and the behavior of their solutions in the stability aspect have been investigated. The main aim of this paper is to consider the local and global stability properties of the equilibrium points for represented systems. Finally, stability of some examples of Gauss model with one prey and two predators is discussed.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
S. Vinoth ◽  
R. Sivasamy ◽  
K. Sathiyanathan ◽  
Bundit Unyong ◽  
Grienggrai Rajchakit ◽  
...  

AbstractIn this article, we discuss the dynamics of a Leslie–Gower ratio-dependent predator–prey model incorporating fear in the prey population. Moreover, the Allee effect in the predator growth is added into account from both biological and mathematical points of view. We explore the influence of the Allee and fear effect on the existence of all positive equilibria. Furthermore, the local stability properties and possible bifurcation behaviors of the proposed system about positive equilibria are discussed with the help of trace and determinant values of the Jacobian matrix. With the help of Sotomayor’s theorem, the conditions for existence of saddle-node bifurcation are derived. Also, we show that the proposed system admits limit cycle dynamics, and its stability is discussed with the value of first Lyapunov coefficient. Moreover, the numerical simulations including phase portrait, one- and two-parameter bifurcation diagrams are performed to validate our important findings.


Diversity ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 23
Author(s):  
Jawdat Alebraheem

In this article, the use of predator-dependent functional and numerical responses is proposed to form an autonomous predator–prey model. The dynamic behaviors of this model were analytically studied. The boundedness of the proposed model was proven; then, the Kolmogorov analysis was used for validating and identifying the coexistence and extinction conditions of the model. In addition, the local and global stability conditions of the model were determined. Moreover, a novel idea was introduced by adding the oscillation of the immigration of the prey into the model which forms a non-autonomous model. The numerically obtained results display that the dynamic behaviors of the model exhibit increasingly stable fluctuations and an increased likelihood of coexistence compared to the autonomous model.


Author(s):  
Jia Liu

In this study, we consider a diffusive predator–prey model with multiple Allee effects induced by fear factors. We investigate the existence, boundedness and permanence of the solution of the system. We also discuss the existence and non-existence of non-constant solutions. We derive sufficient conditions for spatially homogeneous (non-homogenous) Hopf bifurcation and steady state bifurcation. Theoretical and numerical simulations show that strong Allee effect and fear effect have great effect on the dynamics of system.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1280
Author(s):  
Liyun Lai ◽  
Zhenliang Zhu ◽  
Fengde Chen

We proposed and analyzed a predator–prey model with both the additive Allee effect and the fear effect in the prey. Firstly, we studied the existence and local stability of equilibria. Some sufficient conditions on the global stability of the positive equilibrium were established by applying the Dulac theorem. Those results indicate that some bifurcations occur. We then confirmed the occurrence of saddle-node bifurcation, transcritical bifurcation, and Hopf bifurcation. Those theoretical results were demonstrated with numerical simulations. In the bifurcation analysis, we only considered the effect of the strong Allee effect. Finally, we found that the stronger the fear effect, the smaller the density of predator species. However, the fear effect has no influence on the final density of the prey.


BIOMAT 2007 ◽  
2008 ◽  
Author(s):  
EDUARDO GONZÁLEZ-OLIVARES ◽  
JAIME MENA-LORCA ◽  
HÉCTOR MENESES-ALCAY ◽  
BETSABÉ GONZÁLEZ-YAÑEZ ◽  
JOSÉ D. FLORES

Sign in / Sign up

Export Citation Format

Share Document