scholarly journals High-Dimensional Mahalanobis Distances of Complex Random Vectors

Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1877
Author(s):  
Deliang Dai ◽  
Yuli Liang

In this paper, we investigate the asymptotic distributions of two types of Mahalanobis distance (MD): leave-one-out MD and classical MD with both Gaussian- and non-Gaussian-distributed complex random vectors, when the sample size n and the dimension of variables p increase under a fixed ratio c=p/n→∞. We investigate the distributional properties of complex MD when the random samples are independent, but not necessarily identically distributed. Some results regarding the F-matrix F=S2−1S1—the product of a sample covariance matrix S1 (from the independent variable array (be(Zi)1×n) with the inverse of another covariance matrix S2 (from the independent variable array (Zj≠i)p×n)—are used to develop the asymptotic distributions of MDs. We generalize the F-matrix results so that the independence between the two components S1 and S2 of the F-matrix is not required.

2021 ◽  
Author(s):  
Marie Turčičová ◽  
Jan Mandel ◽  
Kryštof Eben

<p>A widely popular group of data assimilation methods in meteorological and geophysical sciences is formed by filters based on Monte-Carlo approximation of the traditional Kalman filter, e.g. <span>E</span><span>nsemble Kalman filter </span><span>(EnKF)</span><span>, </span><span>E</span><span>nsemble </span><span>s</span><span>quare-root filter and others. Due to the computational cost, ensemble </span><span>size </span><span>is </span><span>usually </span><span>small </span><span>compar</span><span>ed</span><span> to the dimension of the </span><span>s</span><span>tate </span><span>vector. </span><span>Traditional </span> <span>EnKF implicitly uses the sample covariance which is</span><span> a poor estimate of the </span><span>background covariance matrix - singular and </span><span>contaminated by </span><span>spurious correlations. </span></p><p><span>W</span><span>e focus on modelling the </span><span>background </span><span>covariance matrix by means of </span><span>a linear model for its inverse. This is </span><span>particularly </span><span>useful</span> <span>in</span><span> Gauss-Markov random fields (GMRF), </span><span>where</span> <span>the inverse covariance matrix has </span><span>a banded </span><span>structure</span><span>. </span><span>The parameters of the model are estimated by the</span><span> score matching </span><span>method which </span><span>provides</span><span> estimators in a closed form</span><span>, cheap to compute</span><span>. The resulting estimate</span><span> is a key component of the </span><span>proposed </span><span>ensemble filtering algorithms. </span><span>Under the assumption that the state vector is a GMRF in every time-step, t</span><span>he Score matching filter with Gaussian resamplin</span><span>g (SMF-GR) </span><span>gives</span><span> in every time-step a consistent (in the large ensemble limit) estimator of mean and covariance matrix </span><span>of the forecast and analysis distribution</span><span>. Further, we propose a filtering method called Score matching ensemble filter (SMEF), based on regularization of the EnK</span><span>F</span><span>. Th</span><span>is</span><span> filter performs well even for non-Gaussian systems with non-linear dynamic</span><span>s</span><span>. </span><span>The performance of both filters is illustrated on a simple linear convection model and Lorenz-96.</span></p>


2007 ◽  
Vol 14 (6) ◽  
pp. 425-428 ◽  
Author(s):  
Sbastien Bausson ◽  
Frdric Pascal ◽  
Philippe Forster ◽  
Jean-Philippe Ovarlez ◽  
Pascal Larzabal

Author(s):  
Dinghui Wu ◽  
Juan Zhang ◽  
Bo Wang ◽  
Tinglong Pan

Traditional static threshold–based state analysis methods can be applied to specific signal-to-noise ratio situations but may present poor performance in the presence of large sizes and complexity of power system. In this article, an improved maximum eigenvalue sample covariance matrix algorithm is proposed, where a Marchenko–Pastur law–based dynamic threshold is introduced by taking all the eigenvalues exceeding the supremum into account for different signal-to-noise ratio situations, to improve the calculation efficiency and widen the application fields of existing methods. The comparison analysis based on IEEE 39-Bus system shows that the proposed algorithm outperforms the existing solutions in terms of calculation speed, anti-interference ability, and universality to different signal-to-noise ratio situations.


2013 ◽  
Vol 143 (11) ◽  
pp. 1887-1897 ◽  
Author(s):  
Weiming Li ◽  
Jiaqi Chen ◽  
Yingli Qin ◽  
Zhidong Bai ◽  
Jianfeng Yao

Sign in / Sign up

Export Citation Format

Share Document