scholarly journals A Novel Exact Plate Theory for Bending Vibrations Based on the Partial Differential Operator Theory

Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1920
Author(s):  
Chuanping Zhou ◽  
Maofa Wang ◽  
Xiao Han ◽  
Huanhuan Xue ◽  
Jing Ni ◽  
...  

Thick wall structures are usually applied at a highly reduced frequency. It is crucial to study the refined dynamic modeling of a thick plate, as it is directly related to the dynamic mechanical characteristics of an engineering structure or device, elastic wave scattering and dynamic stress concentration, and motion stability and dynamic control of a distributed parameter system. In this paper, based on the partial differential operator theory, an exact elasto-dynamics theory without assumptions for bending vibrations is presented by using the formal solution proposed by Boussinesq–Galerkin, and its dynamic equations are obtained under appropriate gauge conditions. The exact plate theory is then compared with other theories of plates. Since the derivation of the dynamic equation is conducted without any prior assumption, the proposed dynamic equation of plates is more exact and can be applied to a wider frequency range and greater thickness.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Meriem Belahdji ◽  
Setti Ayad ◽  
Mohammed Hichem Mortad

Abstract The aim of this paper is to provide some a priori estimates for a beam-like operator. Some applications and counterexamples are also given.



1997 ◽  
Vol 145 ◽  
pp. 125-142
Author(s):  
Takeshi Mandai

Consider a partial differential operator(1.1) where K is a non-negative integer and aj,a are real-analytic in a neighborhood of (0, 0)





2005 ◽  
Vol 2005 (2) ◽  
pp. 167-173 ◽  
Author(s):  
Khairia El-Said El-Nadi

We consider some stochastic difference partial differential equations of the form du(x,t,c)=L(x,t,D)u(x,t,c)dt+M(x,t,D)u(x,t−a,c)dw(t), where L(x,t,D) is a linear uniformly elliptic partial differential operator of the second order, M(x,t,D) is a linear partial differential operator of the first order, and w(t) is a Weiner process. The existence and uniqueness of the solution of suitable mixed problems are studied for the considered equation. Some properties are also studied. A more general stochastic problem is considered in a Hilbert space and the results concerning stochastic partial differential equations are obtained as applications.







Sign in / Sign up

Export Citation Format

Share Document