scholarly journals Infinite Sum of the Incomplete Gamma Function Expressed in Terms of the Hurwitz Zeta Function

Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1952
Author(s):  
Robert Reynolds ◽  
Allan Stauffer

We apply our simultaneous contour integral method to an infinite sum in Prudnikov et al. and use it to derive the infinite sum of the Incomplete gamma function in terms of the Hurwitz zeta function. We then evaluate this formula to derive new series in terms of special functions and fundamental constants. All the results in this work are new.

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Robert Reynolds ◽  
Allan Stauffer

In this manuscript, the authors derive closed formula for definite integrals of combinations of powers and logarithmic functions of complicated arguments and express these integrals in terms of the Hurwitz zeta functions. These derivations are then expressed in terms of fundamental constants, elementary, and special functions. A summary of the results is produced in the form of a table of definite integrals for easy referencing by readers.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2369
Author(s):  
Robert Reynolds ◽  
Allan Stauffer

We examine the improved infinite sum of the incomplete gamma function for large values of the parameters involved. We also evaluate the infinite sum and equivalent Hurwitz-Lerch zeta function at special values and produce a table of results for easy reading. Almost all Hurwitz-Lerch zeta functions have an asymmetrical zero distribution.


Author(s):  
G. Nemes

In this paper, we reconsider the large- a asymptotic expansion of the Hurwitz zeta function ζ ( s , a ). New representations for the remainder term of the asymptotic expansion are found and used to obtain sharp and realistic error bounds. Applications to the asymptotic expansions of the polygamma functions, the gamma function, the Barnes G -function and the s -derivative of the Hurwitz zeta function ζ ( s , a ) are provided. A detailed discussion on the sharpness of our error bounds is also given.


Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 9
Author(s):  
Robert Reynolds ◽  
Allan Stauffer

The objective of the present paper is to obtain a quadruple infinite integral. This integral involves the product of the Struve and parabolic cylinder functions and expresses it in terms of the Hurwitz–Lerch Zeta function. Almost all Hurwitz-Lerch Zeta functions have an asymmetrical zero distributionSpecial cases in terms fundamental constants and other special functions are produced. All the results in the work are new.


2004 ◽  
Vol 2004 (67) ◽  
pp. 3653-3662
Author(s):  
Anthony A. Ruffa

A procedure for generating infinite series identities makes use of the generalized method of exhaustion by analytically evaluating the inner series of the resulting double summation. Identities are generated involving both elementary and special functions. Infinite sums of special functions include those of the gamma and polygamma functions, the Hurwitz Zeta function, the polygamma function, the Gauss hypergeometric function, and the Lerch transcendent. The procedure can be automated withMathematica(or equivalent software).


Sign in / Sign up

Export Citation Format

Share Document