scholarly journals Symbol-Pair Distance of Repeated-Root Constacyclic Codes of Prime Power Lengths over \({{\mathbb{F}_{p^m}[u]}/{\langle u^3\rangle}}\)

Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2554
Author(s):  
Mohammed E. Charkani ◽  
Hai Q. Dinh ◽  
Jamal Laaouine ◽  
Woraphon Yamaka

Let p be a prime, s, m be positive integers, γ be a nonzero element of the finite field Fpm, and let R=Fpm[u]/⟨u3⟩ be the finite commutative chain ring. In this paper, the symbol-pair distances of all γ-constacyclic codes of length ps over R are completely determined.

2019 ◽  
Vol 19 (11) ◽  
pp. 2050209 ◽  
Author(s):  
Hai Q Dinh ◽  
Sampurna Satpati ◽  
Abhay Kumar Singh ◽  
Woraphon Yamaka

Let [Formula: see text] be an odd prime, [Formula: see text] and [Formula: see text] be positive integers and [Formula: see text] be a nonzero element of [Formula: see text]. The [Formula: see text]-constacyclic codes of length [Formula: see text] over [Formula: see text] are linearly ordered under set theoretic inclusion as ideals of the chain ring [Formula: see text]. Using this structure, the symbol-triple distances of all such [Formula: see text]-constacyclic codes are established in this paper. All maximum distance separable symbol-triple constacyclic codes of length [Formula: see text] are also determined as an application.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ram Krishna Verma ◽  
Om Prakash ◽  
Ashutosh Singh ◽  
Habibul Islam

<p style='text-indent:20px;'>For an odd prime <inline-formula><tex-math id="M1">\begin{document}$ p $\end{document}</tex-math></inline-formula> and positive integers <inline-formula><tex-math id="M2">\begin{document}$ m $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ \ell $\end{document}</tex-math></inline-formula>, let <inline-formula><tex-math id="M4">\begin{document}$ \mathbb{F}_{p^m} $\end{document}</tex-math></inline-formula> be the finite field with <inline-formula><tex-math id="M5">\begin{document}$ p^{m} $\end{document}</tex-math></inline-formula> elements and <inline-formula><tex-math id="M6">\begin{document}$ R_{\ell,m} = \mathbb{F}_{p^m}[v_1,v_2,\dots,v_{\ell}]/\langle v^{2}_{i}-1, v_{i}v_{j}-v_{j}v_{i}\rangle_{1\leq i, j\leq \ell} $\end{document}</tex-math></inline-formula>. Thus <inline-formula><tex-math id="M7">\begin{document}$ R_{\ell,m} $\end{document}</tex-math></inline-formula> is a finite commutative non-chain ring of order <inline-formula><tex-math id="M8">\begin{document}$ p^{2^{\ell} m} $\end{document}</tex-math></inline-formula> with characteristic <inline-formula><tex-math id="M9">\begin{document}$ p $\end{document}</tex-math></inline-formula>. In this paper, we aim to construct quantum codes from skew constacyclic codes over <inline-formula><tex-math id="M10">\begin{document}$ R_{\ell,m} $\end{document}</tex-math></inline-formula>. First, we discuss the structures of skew constacyclic codes and determine their Euclidean dual codes. Then a relation between these codes and their Euclidean duals has been obtained. Finally, with the help of a duality-preserving Gray map and the CSS construction, many MDS and better non-binary quantum codes are obtained as compared to the best-known quantum codes available in the literature.</p>


Author(s):  
Teeramet Inchaisri ◽  
Jirayu Phuto ◽  
Chakkrid Klin-Eam

In this paper, we focus on the algebraic structure of left negacyclic codes of length [Formula: see text] over the finite non-commutative chain ring [Formula: see text] where [Formula: see text] is an automorphism on [Formula: see text]. After that, the number of codewords of all left negacyclic codes is obtained. For each left negacyclic code, we also obtain the structure of its right dual code. In the remaining result, the number of distinct left negacyclic codes is given. Finally, a one-to-one correspondence between left negacyclic and left [Formula: see text]-constacyclic codes of length [Formula: see text] over [Formula: see text] is constructed via ring isomorphism, which carries over the results regarding left negacyclic codes corresponding to left [Formula: see text]-constacyclic codes of length [Formula: see text] over [Formula: see text] where [Formula: see text] is a nonzero element of the field [Formula: see text] such that [Formula: see text].


2021 ◽  
Vol 28 (04) ◽  
pp. 581-600
Author(s):  
Hai Q. Dinh ◽  
Hualu Liu ◽  
Roengchai Tansuchat ◽  
Thang M. Vo

Negacyclic codes of length [Formula: see text] over the Galois ring [Formula: see text] are linearly ordered under set-theoretic inclusion, i.e., they are the ideals [Formula: see text], [Formula: see text], of the chain ring [Formula: see text]. This structure is used to obtain the symbol-pair distances of all such negacyclic codes. Among others, for the special case when the alphabet is the finite field [Formula: see text] (i.e., [Formula: see text]), the symbol-pair distance distribution of constacyclic codes over [Formula: see text] verifies the Singleton bound for such symbol-pair codes, and provides all maximum distance separable symbol-pair constacyclic codes of length [Formula: see text] over [Formula: see text].


2019 ◽  
Vol 12 (04) ◽  
pp. 1950050
Author(s):  
Saroj Rani

Constacyclic codes form an important class of linear codes which is remarkable generalization of cyclic and negacyclic codes. In this paper, we assume that [Formula: see text] is the finite field of order [Formula: see text] where [Formula: see text] is a power of the prime [Formula: see text] and [Formula: see text] are distinct odd primes, and [Formula: see text] are positive integers. We determine generator polynomials of all constacyclic codes of length [Formula: see text] over the finite field [Formula: see text] We also determine their dual codes.


2019 ◽  
Vol 19 (06) ◽  
pp. 2050103 ◽  
Author(s):  
Yonglin Cao ◽  
Yuan Cao ◽  
Hai Q. Dinh ◽  
Fang-Wei Fu ◽  
Jian Gao ◽  
...  

Let [Formula: see text] be a finite field of cardinality [Formula: see text], where [Formula: see text] is an odd prime, [Formula: see text] be positive integers satisfying [Formula: see text], and denote [Formula: see text], where [Formula: see text] is an irreducible polynomial in [Formula: see text]. In this note, for any fixed invertible element [Formula: see text], we present all distinct linear codes [Formula: see text] over [Formula: see text] of length [Formula: see text] satisfying the condition: [Formula: see text] for all [Formula: see text]. This conclusion can be used to determine the structure of [Formula: see text]-constacyclic codes over the finite chain ring [Formula: see text] of length [Formula: see text] for any positive integer [Formula: see text] satisfying [Formula: see text].


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Tingting Wu ◽  
Shixin Zhu ◽  
Li Liu ◽  
Lanqiang Li

<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{F}_{q} $\end{document}</tex-math></inline-formula> be a finite field with character <inline-formula><tex-math id="M2">\begin{document}$ p $\end{document}</tex-math></inline-formula>. In this paper, the multiplicative group <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{F}_{q}^{*} = \mathbb{F}_{q}\setminus\{0\} $\end{document}</tex-math></inline-formula> is decomposed into a mutually disjoint union of <inline-formula><tex-math id="M4">\begin{document}$ \gcd(6l^mp^n,q-1) $\end{document}</tex-math></inline-formula> cosets over subgroup <inline-formula><tex-math id="M5">\begin{document}$ &lt;\xi^{6l^mp^n}&gt; $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M6">\begin{document}$ \xi $\end{document}</tex-math></inline-formula> is a primitive element of <inline-formula><tex-math id="M7">\begin{document}$ \mathbb{F}_{q} $\end{document}</tex-math></inline-formula>. Based on the decomposition, the structure of constacyclic codes of length <inline-formula><tex-math id="M8">\begin{document}$ 6l^mp^n $\end{document}</tex-math></inline-formula> over finite field <inline-formula><tex-math id="M9">\begin{document}$ \mathbb{F}_{q} $\end{document}</tex-math></inline-formula> and their duals is established in terms of their generator polynomials, where <inline-formula><tex-math id="M10">\begin{document}$ p\neq{3} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M11">\begin{document}$ l\neq{3} $\end{document}</tex-math></inline-formula> are distinct odd primes, <inline-formula><tex-math id="M12">\begin{document}$ m $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M13">\begin{document}$ n $\end{document}</tex-math></inline-formula> are positive integers. In addition, we determine the characterization and enumeration of all linear complementary dual(LCD) negacyclic codes and self-dual constacyclic codes of length <inline-formula><tex-math id="M14">\begin{document}$ 6l^mp^n $\end{document}</tex-math></inline-formula> over <inline-formula><tex-math id="M15">\begin{document}$ \mathbb{F}_{q} $\end{document}</tex-math></inline-formula>.</p>


2017 ◽  
Vol 43 ◽  
pp. 22-41 ◽  
Author(s):  
Hai Q. Dinh ◽  
Hien D.T. Nguyen ◽  
Songsak Sriboonchitta ◽  
Thang M. Vo

10.37236/2732 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
David S. Gunderson ◽  
Hanno Lefmann

If $G$ is a large $K_k$-free graph, by Ramsey's theorem, a large set of vertices is independent. For graphs whose vertices are positive integers, much recent work has been done to identify what arithmetic structure is possible in an independent set. This paper addresses  similar problems: for graphs whose vertices are affine or linear spaces over a finite field,  and when the vertices of the graph are elements of an arbitrary Abelian group.


2019 ◽  
Vol 18 (02) ◽  
pp. 1950023 ◽  
Author(s):  
Hai Q. Dinh ◽  
Bac T. Nguyen ◽  
Songsak Sriboonchitta ◽  
Thang M. Vo

For any odd prime [Formula: see text] such that [Formula: see text], the structures of all [Formula: see text]-constacyclic codes of length [Formula: see text] over the finite commutative chain ring [Formula: see text] [Formula: see text] are established in term of their generator polynomials. When the unit [Formula: see text] is a square, each [Formula: see text]-constacyclic code of length [Formula: see text] is expressed as a direct sum of two constacyclic codes of length [Formula: see text]. In the main case that the unit [Formula: see text] is not a square, it is shown that the ambient ring [Formula: see text] is a principal ideal ring. From that, the structure, number of codewords, duals of all such [Formula: see text]-constacyclic codes are obtained. As an application, we identify all self-orthogonal, dual-containing, and the unique self-dual [Formula: see text]-constacyclic codes of length [Formula: see text] over [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document