scholarly journals General Fractional Vector Calculus

Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2816
Author(s):  
Vasily E. Tarasov

A generalization of fractional vector calculus (FVC) as a self-consistent mathematical theory is proposed to take into account a general form of non-locality in kernels of fractional vector differential and integral operators. Self-consistency involves proving generalizations of all fundamental theorems of vector calculus for generalized kernels of operators. In the generalization of FVC from power-law nonlocality to the general form of nonlocality in space, we use the general fractional calculus (GFC) in the Luchko approach, which was published in 2021. This paper proposed the following: (I) Self-consistent definitions of general fractional differential vector operators: the regional and line general fractional gradients, the regional and surface general fractional curl operators, the general fractional divergence are proposed. (II) Self-consistent definitions of general fractional integral vector operators: the general fractional circulation, general fractional flux and general fractional volume integral are proposed. (III) The general fractional gradient, Green’s, Stokes’ and Gauss’s theorems as fundamental theorems of general fractional vector calculus are proved for simple and complex regions. The fundamental theorems (Gradient, Green, Stokes, Gauss theorems) of the proposed general FVC are proved for a wider class of domains, surfaces and curves. All these three parts allow us to state that we proposed a calculus, which is a general fractional vector calculus (General FVC). The difficulties and problems of defining general fractional integral and differential vector operators are discussed to the nonlocal case, caused by the violation of standard product rule (Leibniz rule), chain rule (rule of differentiation of function composition) and semigroup property. General FVC for orthogonal curvilinear coordinates, which includes general fractional vector operators for the spherical and cylindrical coordinates, is also proposed.

1927 ◽  
Vol 46 ◽  
pp. 194-205 ◽  
Author(s):  
C. E. Weatherburn

The properties of “triply orthogonal” systems of surfaces have been examined by various writers and in considerable detail; but those of triple systems generally have not hitherto received the same attention. It is the purpose of this paper to discuss non-orthogonal systems, and to investigate formulæ in terms of the “oblique” curvilinear coordinates u, v, w which such a system determines.


2011 ◽  
Vol 130-134 ◽  
pp. 2993-2996
Author(s):  
Ming Qin Liu ◽  
Y.L. Liu

The purpose of this paper is to present a 2D depth-averaged model under orthogonal curvilinear coordinates for simulating two-dimensional circular dam-break flows. The proposed model uses an orthogonal curvilinear coordinate system efficiently and accurately to simulate the flow field with irregular boundaries. As for the numerical solution procedure, The SIMPLEC solution procedure has been used for the transformed governing equations in the transformed domain. Practical application of the model is illustrated by an example, which demonstrates that the mathematical model can capture hydraulic discontinuities accurately such as steep fronts, hydraulic jump and drop, etc.


Sign in / Sign up

Export Citation Format

Share Document