scholarly journals Total Controllability of the Second Order Semi-Linear Differential Equation with Infinite Delay and Non-Instantaneous Impulses

2018 ◽  
Vol 23 (3) ◽  
pp. 32 ◽  
Author(s):  
Dimplekumar Chalishajar ◽  
Avadhesh Kumar
1986 ◽  
Vol 102 (3-4) ◽  
pp. 253-257 ◽  
Author(s):  
B. J. Harris

SynopsisIn an earlier paper [6] we showed that if q ϵ CN[0, ε) for some ε > 0, then the Titchmarsh–Weyl m(λ) function associated with the second order linear differential equationhas the asymptotic expansionas |A| →∞ in a sector of the form 0 < δ < arg λ < π – δ.We show that if the real valued function q admits the expansionin a neighbourhood of 0, then


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 806 ◽  
Author(s):  
Ginkyu Choi Soon-Mo Choi ◽  
Jaiok Jung ◽  
Roh

In this paper, we will consider the Hyers-Ulam stability for the second order inhomogeneous linear differential equation, u ′ ′ ( x ) + α u ′ ( x ) + β u ( x ) = r ( x ) , with constant coefficients. More precisely, we study the properties of the approximate solutions of the above differential equation in the class of twice continuously differentiable functions with suitable conditions and compare them with the solutions of the homogeneous differential equation u ′ ′ ( x ) + α u ′ ( x ) + β u ( x ) = 0 . Several mathematicians have studied the approximate solutions of such differential equation and they obtained good results. In this paper, we use the classical integral method, via the Wronskian, to establish the stability of the second order inhomogeneous linear differential equation with constant coefficients and we will compare our result with previous ones. Specially, for any desired point c ∈ R we can have a good approximate solution near c with very small error estimation.


Sign in / Sign up

Export Citation Format

Share Document