scholarly journals CO2/CH4 and H2/CH4 Gas Separation Performance of CTA-TNT@CNT Hybrid Mixed Matrix Membranes

Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 862
Author(s):  
Chhabilal Regmi ◽  
Saeed Ashtiani ◽  
Zdeněk Hrdlička ◽  
Karel Friess

This study explored the underlying synergy between titanium dioxide nanotube (TNT) and carbon nanotube (CNT) hybrid fillers in cellulose triacetate (CTA)-based mixed matrix membranes (MMMs) for natural gas purification. The CNT@TNT hybrid nanofillers were blended with CTA polymer and cast as a thin film by a facile casting technique, after which they were used for single gas separation. The hybrid filler-based membrane depicted a higher CO2 uptake affinity than the single filler (CNT/TNT)-based membrane. The gas separation results indicate that the hybrid fillers (TNT@CNT) are strongly selective for CO2 over CH4 and H2 over CH4. The increment in the CO2/CH4 and H2/CH4 selectivities compared to the pristine CTA membrane was 42.98 from 25.08 and 48.43 from 36.58, respectively. Similarly, the CO2 and H2 permeability of the CTA-TNT@CNT membrane increased by six- and five-fold, respectively, compared to the pristine CTA membrane. Such significant improvements in CO2/CH4 and H2/CH4 separation performance and thermal and mechanical properties suggest a feasible and practical approach for potential biogas upgrading and natural gas purification.

Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 777
Author(s):  
Chhabilal Regmi ◽  
Saeed Ashtiani ◽  
Zdeněk Sofer ◽  
Karel Friess

The study of the effects associated with the compatibility of the components of the hybrid filler with polymer matrix, which ultimately decide on achieving mixed matrix membranes (MMMs) with better gas separation properties, is essential. Herein, a facile solution casting process of simple incorporating CeO2@GO hybrid inorganic filler material is implemented. Significant improvements in material and physico-chemical properties of the synthesized membranes were observed by SEM, XRD, TGA, and stress-strain measurements. Usage of graphene oxide (GO) with polar groups on the surface enabled forming bonds with ceria (CeO2) nanoparticles and CTA polymer and provided the homogeneous dispersion of the nanofillers in the hybrid MMMs. Moreover, increasing GO loading concentration enhanced both gas permeation in MMMs and CO2 gas uptakes. The best performance was achieved by the membrane containing 7 wt.% of GO with CO2 permeability of 10.14 Barrer and CO2/CH4 selectivity 50.7. This increase in selectivity is almost fifteen folds higher than the CTA-CeO2 membrane sample, suggesting the detrimental effect of GO for enhancing the selectivity property of the MMMs. Hence, a favorable synergistic effect of CeO2@GO hybrid fillers on gas separation performance is observed, propounding the efficient and feasible strategy of using hybrid fillers in the membrane for the potential biogas upgrading process.


2020 ◽  
Vol 43 (11) ◽  
pp. 2167-2180
Author(s):  
Seyed Mohammdhadi Mousavi ◽  
Ahmadreza Raisi ◽  
Hamid Hashemi Moghaddam ◽  
Mohammad Salehi Maleh

Sign in / Sign up

Export Citation Format

Share Document